
Nature | www.nature.com | 1

Article

Learnable latent embeddings for joint 
behavioural and neural analysis

Steffen Schneider1,2, Jin Hwa Lee1,2 & Mackenzie Weygandt Mathis1 ✉

Mapping behavioural actions to neural activity is a fundamental goal of neuroscience. 
As our ability to record large neural and behavioural data increases, there is growing 
interest in modelling neural dynamics during adaptive behaviours to probe neural 
representations1–3. In particular, although neural latent embeddings can reveal 
underlying correlates of behaviour, we lack nonlinear techniques that can explicitly 
and flexibly leverage joint behaviour and neural data to uncover neural dynamics3–5. 
Here, we fill this gap with a new encoding method, CEBRA, that jointly uses behavioural 
and neural data in a (supervised) hypothesis- or (self-supervised) discovery-driven 
manner to produce both consistent and high-performance latent spaces. We show 
that consistency can be used as a metric for uncovering meaningful differences, and 
the inferred latents can be used for decoding. We validate its accuracy and demonstrate 
our tool’s utility for both calcium and electrophysiology datasets, across sensory and 
motor tasks and in simple or complex behaviours across species. It allows leverage of 
single- and multi-session datasets for hypothesis testing or can be used label free. 
Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex 
kinematic features, for the production of consistent latent spaces across two-photon 
and Neuropixels data, and can provide rapid, high-accuracy decoding of natural 
videos from visual cortex.

A central quest in neuroscience is the neural origin of behaviour1,2. 
Nevertheless, we are still limited in both the number of neurons and 
length of time we can record from behaving animals in a session. There-
fore, we need new methods that can combine data across animals and 
sessions with minimal assumptions, thereby generating interpretable 
neural embedding spaces1,3. Current tools for representation learning 
are either linear or, if nonlinear, typically rely on generative models and 
they do not yield consistent embeddings across animals (or repeated 
runs of the algorithm). Here, we combine recent advances in nonlinear 
disentangled representation learning and self-supervised learning to 
develop a new dimensionality reduction method that can be applied 
jointly to behavioural and neural recordings to show meaningful 
lower-dimensional neural population dynamics3–5.

From data visualization (clustering) to discovery of latent spaces 
that explain neural variance, dimensionality reduction of behaviour or 
neural data has been impactful in neuroscience. For example, complex 
three-dimensional (3D) forelimb reaching can be reduced to between 
only eight and twelve dimensions6,7, and low-dimensional embeddings 
show some robust aspects of movements (for example, principal com-
ponent analysis (PCA)-based manifolds in which the neural state space 
can easily be constrained and is stable across time8–10). Linear methods 
such as PCA are often used to increase interpretability, but this comes 
at the cost of performance1. Uniform manifold approximation and 
projection (UMAP)11 and t-distributed stochastic neighbour embed-
ding (t-SNE)12 are excellent nonlinear methods but they lack the ability 
to explicitly use time information, which is always available in neural 

recordings, and they are not as directly interpretable as PCA. Nonlinear 
methods are desirable for use in high-performance decoding but often 
lack identifiability—the desirable property that true model parameters 
can be determined, up to a known indeterminacy13,14. This is critical 
because it ensures that the learned representations are uniquely deter-
mined and thus facilitates consistency across animals and/or sessions.

There is recent evidence that label-guided variational auto-encoders 
(VAEs) could improve interpretability5,15,16. Namely, by using behav-
ioural variables, such algorithms can learn to project future behaviour 
onto past neural activity15, or explicitly to use label priors to shape the 
embedding5. However, these methods still have restrictive explicit 
assumptions on the underlying statistics of the data and they do not 
guarantee consistent neural embeddings across animals5,17,18, which 
limits both their generalizability and interpretability (and thereby 
affects accurate decoding across animals).

We address these open challenges with CEBRA, a new self-supervised 
learning algorithm for obtaining interpretable, consistent embeddings 
of high-dimensional recordings using auxiliary variables. Our method 
combines ideas from nonlinear independent component analysis (ICA) 
with contrastive learning14,19–21, a powerful self-supervised learning 
scheme, to generate latent embeddings conditioned on behaviour 
(auxiliary variables) and/or time. CEBRA uses a new data-sampling 
scheme to train a neural network encoder with a contrastive optimi-
zation objective to shape the embedding space. It can also generate 
embeddings across multiple subjects and cope with distribution shifts 
among experimental sessions, subjects and recording modalities. 

https://doi.org/10.1038/s41586-023-06031-6

Received: 30 March 2022

Accepted: 28 March 2023

Published online: 3 May 2023

Open access

 Check for updates

1Brain Mind Institute & Neuro X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland. 2These authors contributed equally: Steffen Schneider, Jin Hwa Lee.  
✉e-mail: mackenzie@post.harvard.edu

https://doi.org/10.1038/s41586-023-06031-6
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06031-6&domain=pdf
mailto:mackenzie@post.harvard.edu


2 | Nature | www.nature.com

Article

Importantly, our method relies on neither data augmentation (as does 
SimCLR22) nor a specific generative model, which would limit its range 
of use.

Joint behavioural and neural embeddings
We propose a framework for jointly trained latent embeddings. CEBRA 
leverages user-defined labels (supervised, hypothesis-driven) or 
time-only labels (self-supervised, discovery-driven; Fig. 1a and Sup-
plementary Note 1) to obtain consistent embeddings of neural activity 

that can be used for both visualization of data and downstream tasks 
such as decoding. Specifically, it is an instantiation of nonlinear ICA 
based on contrastive learning14. Contrastive learning is a technique 
that leverages contrasting samples (positive and negative) against 
each other to find attributes in common and those that separate 
them. We can use discrete and continuous variables and/or time to 
shape the distribution of positive and negative pairs, and then use 
a nonlinear encoder (here, a convolutional neural network but can 
be another type of model) trained with a new contrastive learning 
objective. The encoder features form a low-dimensional embedding 

Behaviour
labels

Time
labels

Neural data
(N)

Arti
cial neuron

ring rates

Behaviour label

a

conv-pi-VAE
with test-time labels

0

2π

d

Left
Right

1.6 m0 m

1.6 m

0 m

e

CEBRA
Behaviour

CEBRA
Time

UMAPt-SNEconv-pi-VAE

Rat 1

Rat 2

Rat 3

Rat 4

S
o

ur
ce R2   (%)

100

20

cb

Neural data

Behaviour

Nonlinear encoder
(neural network (f)) 

Contrastive learning
(loss function)

Low-dimensional
embedding

Final layer
(L) output

Repel
dissimilar
samples

Attract
similar

samples

y+ 

yi 

x

+

R

W1 W2 W3 W4

–

La
te

nt
 1

Latent 2 Latent 3

La
te

nt
 1

Latent 2 Latent 3

Reconstructed latent Reconstruction score

La
te

nt
 1

Latent 2

True latent

r1 
r2 
r3 

... 
r100

autoLFADS

Rat
 1

Rat
 2

Rat
 4

Rat
 3

Rat
 1

Rat
 2

Rat
 4

Rat
 3

Rat
 1

Rat
 2

Rat
 4

Rat
 3

Rat
 1

Rat
 2

Rat
 4

Rat
 3

Rat
 1

Rat
 2

Rat
 4

Rat
 3

Rat
 1

Rat
 2

Rat
 4

Rat
 3

Rat
 1

Rat
 2

Rat
 4

Rat
 3

La
te

nt
 1

Latent 2

La
te

nt
 1

Latent 2

La
te

nt
 1

Latent 2

La
te

nt
 1

Latent 2

La
te

nt
 1

Latent 2

+

(φ)

N

94.3 77.1 74.7 53.1 64.2 67.9 41.1

100

90

80

70

CEBRA

Pi-V
AE

au
to

LF
ADS

t-S
NE

UM
AP

R
2

N
eu

ro
ns

0

50

100

Time (s)
0 10 20 30 40

Fig. 1 | Use of CEBRA for consistent and interpretable embeddings.  
a, CEBRA allows for self-supervised, supervised and hybrid approaches for both 
hypothesis-and discovery-driven analysis. Overview of pipeline: collect data (for 
example, pairs of behaviour (or time) and neural data (x,y)), determine positive 
and negative pairs, train CEBRA and produce embeddings. W1,...4 represent the 
neural network weights. b, Left, true 2D latent, where each point is mapped to the 
spiking rate of 100 neurons. Middle, CEBRA embedding after linear regression to 
the true latent. Right, reconstruction score is R2 of linear regression between the 
true latent and resulting embedding from each method. The ‘behaviour label’ is a 
1D random variable sampled from uniform distribution of [0, 2π] that is assigned 
to each time bin of synthetic neural data, as visualized by the colour map. The 
orange line represents the median and each black dot an individual run (n = 100). 
CEBRA-Behaviour shows a significantly higher reconstruction score compared 
with pi-VAE, t-SNE and UMAP (one-way ANOVA, F(4, 495) = 251, P = 1.12 × 10−117 with 

post hoc Tukey’s honest significant difference P < 0.001). c, Rat hippocampus 
data derived from ref. 26. Cartoon from scidraw.io. Electrophysiology data  
were collected while a rat traversed a 1.6 m linear track ‘leftwards’ or ‘rightwards’. 
d, We benchmarked CEBRA against conv-pi-VAE (both with labels and without), 
autoLFADS, t-SNE and unsupervised UMAP. Note: for performance against  
the original pi-VAE see Extended Data Fig. 1. We plot the three latents (all CEBRA- 
embedding figures show the first three latents). The dimensionality of the latent 
space is set to the minimum and equivalent dimension per method (3D for 
CEBRA and 2D for others) for fair comparison. Note: higher dimensions for 
CEBRA can yield higher consistency values (Extended Data Fig. 7). e, Correlation 
matrices show R2 values after fitting a linear model between behaviour-aligned 
embeddings of pairs of rats, one as the target and the other as the source (mean, 
n = 10 runs). Parameters were picked by optimization of average run consistency 
across rats.



Nature | www.nature.com | 3

of the data (Fig. 1a). Generation of consistent embeddings is highly 
desirable and closely linked to identifiability in nonlinear ICA14,23. 
Theoretical work has shown that the use of contrastive learning with 
auxiliary variables is identifiable for bijective neural networks using 
a noise contrastive estimation (NCE) loss14, and that with an InfoNCE 
loss this bijectivity assumption can sometimes be removed24 (see also 
our theoretical generalization in Supplementary Note 2). InfoNCE 
minimization can be viewed as a classification problem such that, 
given a reference sample, the correct positive sample needs to be 
distinguished from multiple negative samples.

CEBRA optimizes neural networks f, f′ that map neural activity to  
an embedding space of a defined dimension (Fig. 1a). Pairs of data  
(x, y) are mapped to this embedding space and then compared with  
a similarity measure ϕ(⋅,⋅). Abbreviating this process with 
ψ φ τ( , ) = ( ( ), ′( ))/x y f x f y  and a temperature hyperparameter, τ, the 
full criterion for optimization is

∑ψ e− ( , ) + log ,
p p

q
i

n
ψ

( ), ( | )

,…, ( | )

+
=1

( , )

n

i

+

1

 



E








x y

x x y y x

y y y x

x y

which, depending on the dataset size, can be optimized with algorithms 
for either batch or stochastic gradient descent.

In contrast to other contrastive learning algorithms, the positive-pair 
distribution p and negative-pair distribution q can be systematically 
designed and allow the use of time, behaviour and other auxiliary 
information to shape the geometry of the embedding space. If only 
discrete labels are used, this training scheme is conceptually similar 
to supervised contrastive learning21.

CEBRA can leverage continuous behavioural (kinematics, actions) 
as well as other discrete variables (trial ID, rewards, brain-area ID and 
so on). Additionally, user-defined information about desired invari-
ances in the embedding is used (across animals, sessions and so on), 
allowing for flexibility in data analysis. We group this information into 
task-irrelevant and -relevant variables, and these can be leveraged 
in different contexts. For example, to investigate trial-to-trial vari-
ability or learning across trials, information such as a trial ID would 
be considered a task-relevant variable. On the contrary, if we aim 
to build a robust brain machine interface that should be invariant 
to such short-term changes, we would include trial information as 
a task-irrelevant variable and obtain an embedding space that no 
longer carries this information. Crucially, this allows inference of 
latent embeddings without explicit modelling of the data-generating 
process (as done in pi-VAE5 and latent factor analysis via dynamical 
systems (LFADS)17). Omitting the generative model and replacing it 
by a contrastive learning algorithm facilitates broader applicability 
without modifications.

Robust and decodable latent embeddings
We first demonstrate that CEBRA significantly outperforms t-SNE, 
UMAP, automatic LFADS (autoLFADS)25 and pi-VAE (the latter was 
shown to outperform PCA, LFADS, demixed PCA and PfLDS (Poisson 
feed-forward neural network linear dynamical system) on some tasks) 
in the reconstruction of ground truth synthetic data (one-way analysis 
of variance (ANOVA), F(4, 495) = 251, P = 1.12 × 10−117; Fig. 1b and Extended 
Data Fig. 1a,b).

We then turned to a hippocampus dataset that was used to bench-
mark neural embedding algorithms5,26 (Extended Data Fig. 1c and Sup-
plementary Note 1). Of note, we first significantly improved pi-VAE by 
the addition of a convolutional neural network (conv-pi-VAE), thereby 
allowing this model to leverage multiple time steps, and used this for 
further benchmarking (Extended Data Fig. 1d,e). To test our methods,  
we first considered the correlation of the resulting embedding space 
across subjects (does it produce similar latent spaces?), and the 

correlation across repeated runs of the algorithm (how consistent 
are the results?). We found that CEBRA significantly outperformed 
other algorithms in the production of consistent embeddings, and it 
produced visually informative embeddings (Fig. 1c–e and Extended 
Data Figs. 2 and 3; for each embedding a single point represents the 
neural population activity over a specified time bin).

When using CEBRA-Behaviour, the consistency of the resulting 
embedding space across subjects is significantly higher compared with 
autoLFADS and conv-pi-VAE, with or without test-time labels (one-way 
ANOVA F(25.4) P = 1.92 × 10−16; Supplementary Table 1 and Fig. 1d,e). 
Qualitatively, it can be appreciated that both CEBRA-Behaviour and 
-Time have similar output embeddings whereas the latents from 
conv-pi-VAE, either with label priors or without labels, are not consistent 
(CEBRA does not need test-time labels), suggesting that the label prior 
strongly shapes the output embedding structure of conv-pi-VAE. We 
also considered correlations across repeated runs of the algorithm, and 
found higher consistency and lower variability with CEBRA (Extended 
Data Fig. 4).

Hypothesis-driven and discovery-driven analyses
Among the advantages of CEBRA are its collective flexibility, limited 
assumptions, and ability to test hypotheses. For the hippocampus, one 
can hypothesize that these neurons represent space27,28 and therefore 
the behavioural label could be either position or velocity (Fig. 2a). 
In addition, considering structure in only the behavioural data (with 
CEBRA) could help refine which behavioural labels to use jointly with 
neural data (Fig. 2b). Conversely, for the sake of argument, we could 
have an alternative hypothesis: that the hippocampus does not map 
space, but simply maps the direction of travel or some other feature. 
Using the same model but hypothesis free, and using time for selection 
of contrastive pairs, is also possible, and/or a hybrid thereof (Fig. 2a,b).

We trained hypothesis-guided (supervised), time-only (self- 
supervised) and hybrid models across a range of input dimensions and 
embedded the neural latents into a 3D space for visualization. Qualita-
tively, we find that the position-based model produces a highly smooth 
embedding that shows the position of the animal—namely, there is a 
continuous ‘loop’ of latent dynamics around the track (Fig. 2b). This 
is consistent with what is known about the hippocampus26 and shows 
the topology of the linear track with direction specificity whereas shuf-
fling the labels, which breaks the correlation between neural activity 
and direction and position, produces an unstructured embedding  
(Fig. 2b).

CEBRA-Time produces an embedding that more closely resembles 
that of position (Fig. 2b). This also suggests that time contrastive learn-
ing captured the major latent space structure, independent of any label 
input, reinforcing the idea that CEBRA can serve both discovery- and 
hypothesis-driven questions (and that running both variants can be 
informative). The hybrid design, whose goal is to disentangle the latent 
to subspaces that are relevant to the given behavioural and residual 
temporal variance and noise, showed a structured embedding space 
similar to behaviour (Fig. 2b).

To quantify how CEBRA can disentangle which variable had the larg-
est influence on embedding, we tested for encoding position, direction 
and combinations thereof (Fig. 2c). We find that position plus direction 
is the most informative label29 (Fig. 2c and Extended Data Fig. 5a–d). 
This is evident both in the embedding and the value of the loss function 
on convergence, which serves as a ‘goodness of fit’ metric to select the 
best labels—that is, which label(s) produce the lowest loss at the same 
point in training (Extended Data Fig. 5e). Note that erroneous (shuffled) 
labels converge to considerably higher loss values.

To measure performance, we consider how well we could decode 
behaviour from the embeddings. As an additional baseline we per-
formed linear dimensionality reduction with PCA. We used a k-nearest- 
neighbour (kNN) decoder for position and direction and measured 



4 | Nature | www.nature.com

Article

the reconstruction error. We find that CEBRA-Behaviour has signifi-
cantly better decoding performance (Fig. 2d and Supplementary 
Video 1) compared with both pi-VAE and our conv-pi-VAE (one-way 
ANOVA, F = 131, P = 3.6 × 10−24), and also CEBRA-Time compared with 
unsupervised methods (autoLFADS, t-SNE, UMAP and PCA; one-way 
ANOVA, F = 1,983, P = 6 × 10−50; Supplementary Table 2). Zhou and 
Wei5 reported a median absolute decoding error of 12 cm error 
whereas we achieved approximately 5 cm (Fig. 2d). CEBRA therefore 
allows for high-performance decoding and also ensures consistent  
embeddings.

Cohomology as a metric for robustness
Although CEBRA can be trained across a range of dimensions, and mod-
els can be selected based on decoding, goodness of fit and consistency, 
we also sought to find a principled approach to verify the robustness 

of embeddings that might yield insight into neural computations30,31 
(Fig. 2e). We used algebraic topology to measure the persistent coho-
mology as a comparison in regard to whether learned latent spaces are 
equivalent. Although it is not required to project embeddings onto a 
sphere, this has the advantage that there are default Betti numbers (for a  
d-dimensional uniform embedding, H H H= 1, = 0, , = 1d0 1 −1⋯ —that is, 
1,0,1 for the two-sphere). We used the distance from the unity line  
(and threshold based on a computed null shuffled distribution in  
Births versus Deaths to compute Betti numbers; Extended Data Fig. 6). 
Using CEBRA-Behaviour or -Time we find a ring topology (1,1,0; Fig. 2f), 
as one would expect from a linear track for place cells. We then computed 
the Eilenberg–MacLane coordinates for the identified cocycle (H1) for 
each model32,33—this allowed us to map each time point to topology- 
preserving coordinates—and indeed we find that the ring topology for 
the CEBRA models matches space (position) across dimensions (Fig. 2g 
and Extended Data Fig.  6). Note that this topology differs from 

Position, shuf�ed 
P + D, shuf�ed 

Direction, shuf�ed 

Position + Direction

Direction only
Position only

Iterations

Behavioural data:
position

Discovery:
time only

Hypothesis:
position

Hybrid:
time and behaviour

Shuf�ed
labels

CEBRA sampling schemes
Attract
similar

samples

Repel dissimilar
samples

Topological data analysis: persistent cohomology

Radius (r) Lifespan

H0

H1

a b

c d

f ge

+

R

R

–

–
–

–

– – – –

– –

–

+ +

Dimension 3 Dimension 8 Dimension 16

1     0     1 

1     1     0 

1     1     0 

1     1     0

Betti numbers 

Sh.

Dim.

3 

8 

16

Hypothesis testing Training loss, goodness of �t Decoding performance

Rig
ht

V
o

id
s

Lo
o

p
s

0 1 2 0 1 20 1 2 90º180ºC
um

ul
at

iv
e

d
is

ta
nc

e

La
te

nt
 1

Latent 2
Latent 3

1.6 m

0 m

Le
ft

CEBRA-Behaviour
conv-pi-VAE (MC)

conv-pi-VAE (kNN)
CEBRA-Time

autoLFADS
t-SNE
UMAP

PCA

La
te

nt
 1

Latent 2

Direction onlyPosition only

P + D, shuf�ed Position, shuf�ed Direction, shuf�ed

Position + Direction
Ground truth
CEBRA-Behaviour
CEBRA-Shuf�e

1.6

1.2

8.0

4.0

0

P
o

si
tio

n 
(m

)

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0 10 20 30 40
Time (s) Error (cm)

0 10 20 30

0 10 20 30
Time (s)

1.6

0.8

6.2

6.0

5.8

5.6

0P
o

si
tio

n 
(m

)

0 2,000 4,000

H0

In
fo

N
C

E

Hypothesis-driven
(position label)

Discovery
(time only)

0º

1.6

0

Righ
t

Le
ft

D
is

ta
nc

e 
(m

)

+

Fig. 2 | Hypothesis- and discovery-driven analysis with CEBRA. a, CEBRA can 
be used in any of three modes: hypothesis-driven mode, discovery-driven mode,  
or hybrid mode, which allows for weaker priors on the latent embedding. b, Left 
to right, CEBRA on behavioural data using position as a label, CEBRA-Time, 
CEBRA-Behaviour (on neural data) with position hypothesis, CEBRA-Hybrid  
(a five-dimensional space was used, in which 3D is first guided by both behaviour +  
time and the final 2D is guided by time) and shuffled (erroneous). c, Embeddings 
with position (P) only, direction (D) only and P + D only, and shuffled position 
only, direction only and P + D only, for hypothesis testing. The loss function can 
be used as a metric for embedding quality. d, Left, we utilized either hypothesis- 
driven P + D or shuffle (erroneous) to decode the position of the rat, which 
yielded a large difference in decoding performance: P + D R2 = 73.35 versus 
−49.90% for shuffled, and median absolute error 5.8 versus 44.7 cm. Purple line 

represents decoding from the 3D hypothesis-based latent space; dashed line is 
shuffled. Right, performance across additional methods (orange bars indicate 
the median of individual runs (n = 10), indicated by black circles. Each run is 
averaged over three splits of the dataset). MC, Monte Carlo. e, Schematic 
showing how persistent cohomology is computed. Each data point is thickened 
to a ball of gradually expanding radius (r) while tracking the birth and death of 
‘cycles’ in each dimension. Prominent lifespans, indicated by pink and purple 
arrows, are considered to determine Betti numbers. f, Top, visualization of 
neural embeddings computed with different input dimensions. Bottom, related 
persistent cohomology lifespan diagrams. g, Betti numbers from shuffled 
embeddings (sh.) and across increasing dimensions (dim.) of CEBRA, and the 
topology-preserving circular coordinates using the first cocycle from persistent 
cohomology analysis (Methods).



Nature | www.nature.com | 5

(1,0,1)—that is, Betti numbers for a uniformly covered sphere—which in 
our setting would indicate a random embedding as found by shuffling  
(Fig. 2g).

Multi-session, multi-animal CEBRA
CEBRA can also be used to jointly train across sessions and different ani-
mals, which can be highly advantageous when there is limited access to 
simultaneously recorded neurons or when looking for animal-invariant 
features in the neural data. We trained CEBRA across animals within 
each multi-animal dataset and find that this joint embedding allows 
for even more consistent embeddings across subjects (Extended Data 
Fig. 7a–c; one-sided, paired t-tests; Allen data: t = −5.80, P = 5.99 × 10−5; 
hippocampus: t = −2.22, P = 0.024).

Although consistency increased, it is not a priori clear that decoding 
from ‘pseudosubjects’ would be equally good because there could be 

session- or animal-specific information that is lost in pseudodecoding 
(because decoding is usually performed within the session). Alterna-
tively, if this joint latent space was as high performance as the single 
subject, that would suggest that CEBRA is able to produce robust 
latent spaces across subjects. Indeed, we find no loss in decoding 
performance (Extended Data Fig. 7c).

It is also possible to rapidly decode from a new session that is unseen 
during training, which is an attractive setting for brain machine inter-
face deployment. We show that, by pretraining on a subset of the sub-
jects, we can apply and rapidly adapt CEBRA-Behaviour on unseen 
data (that is, it runs at 50–100 steps s–1, and positional decoding error 
already decreased by 10 cm after adapting the pretrained network for 
one step). Lastly, we can achieve a lower error more rapidly compared 
with training fully on the unseen individual (Extended Data Fig. 7d). Col-
lectively, this shows that CEBRA can rapidly produce high-performance, 
consistent and robust latent spaces.

CEBRA-Behaviour: labels are ‘direction (1–8)’.
‘Active’ or ‘passive’ are trained separately

Active  Passive  

CEBRA-Behaviour: labels are ‘direction (1–8)’ plus
‘active + passive’, trained concurrently

Active  Passive  

CEBRA-Behaviour: labels are continuous position CEBRA-Time: no explicit positional information used

CEBRA-Behaviour: labels are continuous position 

Active  Passive  

a b

c

g

C
E

B
R

A
-B

eh
av

io
ur

(h
yp

o
th

es
es

)
C

E
B

R
A

-B
eh

av
io

ur
(h

yp
o

th
es

es
)

C
E

B
R

A
-B

eh
av

io
ur

(h
yp

o
th

es
es

)

C
E

B
R

A
-T

im
e

(u
ns

up
er

vi
se

d
)

Single trial decoding

e f

Direction of
movement
(degrees)  

Behavioural task
setting  

Passive

Active

Passive

Active

CEBRA-Behaviour CEBRA-Time conv-pi-VAE
with test time labels

conv-pi-VAE
without labels

t-SNEautoLFADS UMAP

Original
CEBRA

y-positionx-positiony-positionx-position

d

Position (active) Direction (active) Active/passive
ih

0
45
90
135
180
225
270
315

100

80

60

R
2  

(%
)

Dimensions
3 4 8 16 32

Dimensions
3 4 8 16 32

Dimensions
3 4 8 16 32

100

80

60

A
cc

. (
%

)

80

70

60

50

A
cc

. (
%

)

(cm)
15

10

5

0

–5

–10

–15

Fig. 3 | Forelimb movement behaviour in a primate. a, The monkey makes 
either active or passive movements in eight directions. Data derived from area 2 
of primary S1 from Chowdhury et al.34. Cartoon from scidraw.io. b, Embeddings 
of active trials generated with 4D CEBRA-Behaviour, 4D CEBRA-Time, 4D 
autoLFADS, 4D conv-pi-VAE variants, 2D t-SNE and 2D UMAP. The embeddings of 
trials (n = 364) for each direction are post hoc averaged. c, CEBRA-Behaviour 
trained with (x,y) position of the hand. Left, colour coded to x position; right, 
colour coded to y position. d, CEBRA-Time with no external behaviour variables. 
Colour coded as in c. e, CEBRA-Behaviour embedding trained using a 4D latent 
space, with discrete target direction as behaviour labels, trained and plotted 
separately for active and passive trials. f, CEBRA-Behaviour embedding trained 
using a 4D latent space, with discrete target direction and active and passive 
trials as auxiliary labels plotted separately, active versus passive trials. g, CEBRA- 

Behaviour embedding trained with a 4D latent space using active and passive 
trials with continuous (x,y) position as auxiliary labels plotted separately, active 
versus passive trials. The trajectory of each direction is averaged across trials 
(n = 18–30 each, per direction) over time. Each trajectory represents 600 ms 
from −100 ms before the start of the movement. h, Left to right, decoding 
performance of: position using CEBRA-Behaviour trained with (x,y) position 
(active trials); target direction using CEBRA-Behaviour trained with target 
direction (active trials); and active versus passive accuracy (Acc.) using CEBRA- 
Behaviour trained with both active and passive movements. In each case we 
trained and evaluated five seeds, represented by black dots; orange line 
represents the median. i, Decoded trajectory of hand position using CEBRA- 
Behaviour trained on active trial with (x,y) position of the hand. The grey line 
represents a true trajectory and the red line represents a decoded trajectory.



6 | Nature | www.nature.com

Article

Latent dynamics during a motor task
We next consider an eight-direction ‘centre-out’ reaching task paired 
with electrophysiology recordings in primate somatosensory cortex 
(S1)34 (Fig. 3a). The monkey performed many active movements, and in 
a subset of trials experienced randomized bumps that caused passive 
limb movement. CEBRA produced highly informative visualizations of 
the data compared with other methods (Fig. 3b), and CEBRA-Behaviour 
can be used to test the encoding properties of S1. Using either position 
or time information showed embeddings with clear positional encod-
ing (Fig. 3c,d and Extended Data Fig. 8a–c).

To test how directional information and active versus passive move-
ments influence population dynamics in S1 (refs. 34–36), we trained 
embedding spaces with directional information and then either sepa-
rated the trials into active and passive for training (Fig. 3e) or trained 
jointly and post hoc plotted separately (Fig. 3f). We find striking simi-
larities suggesting that active versus passive strongly influences the 
neural latent space: the embeddings for active trials show a clear start 
and stop whereas for passive trials they show a continuous trajectory 
through the embedding, independently of how they are trained. This 
finding is confirmed in embeddings that used only the continuous 
position of the end effector as the behavioural label (Fig. 3g). Notably, 
direction is a less prominent feature (Fig. 3g) although they are entan-
gled parameters in this task.

As the position and active or passive trial type appear robust 
in the embeddings, we further explored the decodability of the 

embeddings. Both position and trial type were readily decodable 
from 8D+ embeddings with a kNN decoder trained on position only, 
but directional information was not as decodable (Fig. 3h). Here 
too, the loss function value is informative for goodness of fit dur-
ing hypothesis testing (Extended Data Fig. 8d–f). Notably, we could 
recover the hand trajectory with R2 = 88% (concatenated across 
26 held-out test trials; Fig. 3i) using a 16D CEBRA-Behaviour model 
trained on position (Fig. 3i). For comparison, an L1 regression using 
all neurons achieved R2 = 74% and 16D conv-pi-VAE achieved R2 = 82%. 
We also tested CEBRA on an additional monkey dataset (mc-maze) 
presented in the Neural Latent Benchmark37, in which it achieved 
state-of-the-art behaviour (velocity) decoding performance (Extended  
Data Fig. 8).

Consistent embeddings across modalities
Although CEBRA is agnostic to the recording modality of neural data, 
do different modalities produce similar latent embeddings? Under-
standing the relationship of calcium signalling and electrophysiology 
is a debated topic, yet an underlying assumption is that they inherently 
represent related, yet not identical, information. Although there is a 
wealth of excellent tools aimed at inferring spike trains from calcium 
data, currently the pseudo-R2 of algorithms on paired spiking and cal-
cium data tops out at around 0.6 (ref. 38). Nonetheless, it is clear that 
recording with either modality has led to similar global conclusions—for 
example, grid cells can be uncovered in spiking or calcium signals33,39, 

a

b

c d Map of cortical areas

g h

j

ie

f

Consistency of embeddings,
2P versus Neuropixels (V1)

Consistency of embeddings
across 2P and Neuropixels,

jointly trained (V1)

Calcium imaging (2P)-only trainedNeuropixels-only trained

Calcium imaging, jointly trainedNeuropixels, jointly trained

Pretrained DINO

Movie frames

‘Behaviour’
sensory input labels

t-SNE visualization of
DINO features

over time

Time (s)

0 10 20 30

VISp (V1)

VISlVISal

VISrl

VISam VISpm

Medial 
Anterior Posterior

Lateral

k

Jointly trained, consistency

V1 intra versus
inter consistency

10 30 50

100 200 400

600 800 900

10 30 50

100 200 400

600 800 900

10 30 50

100 200 400

600 800 900

10 30 50

100 200 400

600 800 900

1.00

0.75

0.50

0.25

0

R
2

R
2

10 30 50 10
0

20
0

40
0

60
0

80
0

90
0
1,

00
0

No. of neurons

No. of neurons

32
3

64
4

128
8 16

1.00

0.75

0.50

0.25

0

10 30 50 10
0

20
0

40
0

60
0

80
0

90
0
1,

00
0

32
3

64
4

128
8 16

100

95

90

85

80

75

70

100

90

80

70

60

50

Intra Inter

Fig. 4 | Spikes and calcium signalling show similar CEBRA embeddings.  
a, CEBRA-Behaviour can use frame-by-frame video features as a label of sensory 
input to extract the neural latent space of the visual cortex of mice watching a 
video. Cartoon from scidraw.io. b, t-SNE visualization of the DINO features of 
video frames from four different DINO configurations (latent size, model size), 
all showing continuous evolution of video frames over time. c,d, Visualization 
of trained 8D latent CEBRA-Behaviour embeddings with Neuropixels (NP) data 
(c) or calcium imaging (2P) (d). Numbers above each embedding indicate neurons 
subsampled from the multi-session concatenated dataset. Colour map as in b. 
e, Linear consistency between embeddings trained with either calcium imaging 
or Neuropixels data (n = 10–1,000 neurons, across n  =  5 shuffles of neural data; 
mean values ± s.e.m.). f,g, Visualization of CEBRA-Behaviour embedding (8D) 
trained jointly with Neuropixels (f) and calcium imaging (g). Colour map as in b. 

h, Linear consistency between embeddings of calcium imaging and Neuropixels 
trained jointly using a multi-session CEBRA model (n = 10–1000 neurons, 
across n = 5 shuffles of neural data; mean values ±  s.e.m.). i, Diagram of mouse 
primary visual cortex (V1, VISp) and higher visual areas. j, CEBRA-Behaviour 
32D model jointly trained with 2P + NP incorporating 400 neurons, followed by 
measurement of consistency within or across areas (2P versus NP) across two 
unique sets of disjoint neurons for three seeds and averaged. k, Models trained 
as in h, with intra-V1 consistency measurement versus all interarea versus V1 
comparison. Purple dots indicate mean of V1 intra-V1 consistency (across 
n = 120 runs) and inter-V1 consistency (n = 120 runs). Intra-V1 consistency is 
significantly higher than interarea consistency (one-sided Welch’s t-test, 
t(12.30) = 4.55, P = 0.00019).



Nature | www.nature.com | 7

reward prediction errors can be found in dopamine neurons across 
species and recording modalities40–42, and visual cortex shows orienta-
tion tuning across species and modalities43–45.

We aimed to formally study whether CEBRA could capture the same 
neural population dynamics either from spikes or calcium imaging. We 
utilized a dataset from the Allen Brain Observatory where mice passively 
watched three videos repeatedly. We focused on paired data from ten 
repeats of ‘Natural Movie 1’ where neural data were recorded with either 
Neuropixels (NP) probes or calcium imaging with a two-photon (2P) 
microscope (from separate mice)46,47. Note that, although the data we 
have considered thus far have goal-driven actions of the animals (such 
as running down a linear track or reaching for targets), this visual cortex 
dataset was collected during passive viewing (Fig. 4a).

We used the video features as ‘behaviour’ labels by extracting 
high-level visual features from the video on a frame-by-frame basis 
with DINO, a powerful vision transformer model48. These were then 
used to sample the neural data with feature-labels (Fig. 4b). Next, we 
used either Neuropixels or 2P data (each with multi-session training) 
to generate (from 8D to 128D) latent spaces from varying numbers of 
neurons recorded from primary visual cortex (V1) (Fig. 4c,d). Visualiza-
tion of CEBRA-Behaviour showed trajectories that smoothly capture 
the video of either modality with an increasing number of neurons. 
This is reflected quantitatively in the consistency metric (Fig. 4e). Strik-
ingly, CEBRA-Time efficiently captured the ten repeats of the video 
(Extended Data Fig. 9), which was not captured by other methods. 
This result demonstrates that there is a highly consistent latent space 
independent of the recording method.

Next, we stacked neurons from different mice and modalities and then 
sampled random subsets of V1 neurons to construct a pseudomouse. 

We did not find that joint training lowered consistency within modality 
(Extended Data Fig. 10a,b) and, overall, we found considerable improve-
ment in consistency with joint training (Fig. 4f–h).

Using CEBRA-Behaviour or -Time, we trained models on five higher 
visual areas and measured consistency with and without joint training, 
and within or across areas. Our results show that, with joint training, 
intra-area consistency is higher compared with other areas (Fig. 4i–k), 
suggesting that CEBRA is not removing biological differences across 
areas, which have known differences in decodability and feature rep-
resentations49,50. Moreover, we tested within modality and find a simi-
lar effect for CEBRA-Behaviour and -Time within recording modality 
(Extended Data Fig. 10c–f).

Decoding of natural videos from cortex
We performed V1 decoding analysis using CEBRA models that are either 
joint-modality trained, single-modality trained or with a baseline popu-
lation vector paired with a simple kNN or naive Bayes decoder. We 
aimed to determine whether we could decode, on a frame-by-frame 
basis, the natural video watched by the mice. We used the final video 
repeat as a held-out test set and nine repeats as the training set. We 
achieved greater than 95% decoding accuracy, which is significantly 
better than baseline decoding methods (naive Bayes or kNN) for 
Neuropixels recordings, and joint-training CEBRA outperformed 
Neuropixels-only CEBRA-based training (single frame: one-way ANOVA, 
F(3,197) = 5.88, P = 0.0007; Supplementary Tables 3–5, Fig. 5a–d and 
Extended Data Fig. 10g,h). Accuracy was defined by either the fraction 
of correct frames within a 1 s window or identification of the correct 
scene. Frame-by-frame results also showed reduced frame ID errors 

Decoding by layer

O
rig

in
al

fr
am

e
kN

N
 d

ec
o

d
in

g
o

n 
C

E
B

R
A

Decoding by cortical area

Frame classi�cationa b

d e gf h

c

VISp (V1)

VISlVISal

VISrl

VISam VISpm

Contrastive loss

Pseudomouse decoding

Behaviour
(DINO

features)
Decoder

CEBRA (10 frames)

Scene classi�cation Singleframe performance Mean frame error

100

75

50

No. of neurons

No. of neurons Layer (s)No. of neurons No. of neurons

25

0

A
cc

. (
%

, i
n 

1 
s 

tim
e 

w
in

d
o

w
)

A
cc

. (
%

, i
n 

1 
s 

tim
e 

w
in

d
o

w
)

A
cc

. (
%

, i
n 

1 
s 

tim
e 

w
in

d
o

w
)

A
cc

. (
%

, i
n 

1 
s 

tim
e 

w
in

d
o

w
)

10 20
0

40
0

60
0

80
0

1,
00

0 10 20
0

40
0

60
0

80
0

1,
00

0

NP, 1 frame
kNN baseline
Bayes baseline
kNN CEBRA
kNN CEBRA joint

100

75

50

25

0

NP, 10 frames
kNN baseline
Bayes baseline
kNN CEBRA
kNN CEBRA joint

100

75

50

25

A
cc

. (
%

)

NP, 1 frame
kNN baseline
Bayes baseline
kNN CEBRA
kNN CEBRA joint

10 20
0

40
0

60
0

80
0

1,
00

0

900

600

300

0

P
re

d
ic

te
d

 f
ra

m
e

NP, 10 frames
kNN CEBRA
Ground truth

0
30

0
60

0
90

0

True frame

NP, 10 frames
kNN baseline
Bayes baseline
kNN CEBRA
kNN CEBRA joint

300

200

100

0

F
ra

m
e 

d
iff

er
en

ce

10 20
0

40
0

60
0

80
0

1,
00

0 10 20
0

40
0

60
0

80
0

100

75

50

25

0

100

90

80

2/
3 4

5/
6

Medial 
Anterior Posterior

Lateral

No. of neurons

VISam
VISpm

VISp (V1)
VISrl

VISal 
VISI

Fig. 5 | Decoding of natural video features from mouse visual cortical  
areas. a, Schematic of the CEBRA encoder and kNN (or naive Bayes) decoder.  
b, Examples of original frames (top row) and frames decoded from CEBRA 
embedding of V1 calcium recording using kNN decoding (bottom row). The last 
repeat among ten was used as the held-out test. c, Decoding accuracy measured 
by considering a predicted frame being within 1 s of the true frame as a correct 
prediction using CEBRA (NP only), jointly trained (2P + NP) or a baseline 
population vector plus kNN or naive Bayes decoder using either a one-frame 
(33 ms) receptive field (left) or ten frames (330 ms) (right); results shown for 
Neuropixels dataset (V1 data); for each neuron number we have n = 5 shuffles, 
mean ± s.e.m. d, Decoding accuracy measured by correct scene prediction 
using either CEBRA (NP only), jointly trained (2P + NP) or baseline population 

vector plus kNN or Bayes decoder using a one-frame (33 ms) receptive field  
(V1 data); n = 5 shuffles per neuron number, mean ± s.e.m. e, Single-frame 
ground truth frame ID versus predicted frame ID for Neuropixels using a CEBRA- 
Behaviour model trained with a 330 ms receptive field (1,000 V1 neurons across 
mice used). f, Mean absolute error of the correct frame index; shown for baseline 
and CEBRA models as computed in c–e. g, Diagram of the cortical areas 
considered and decoding performance from CEBRA (NP only), ten-frame 
receptive field; n = 3 shuffles for each area and number of neurons, 
mean ± s.e.m. h, V1 decoding performance versus layer category using 
900 neurons with a 330 ms receptive field CEBRA-Behaviour model; n = 5 
shuffles for each layer, mean ± s.e.m.



8 | Nature | www.nature.com

Article
(one-way ANOVA, F(3,16) = 20.22, P = 1.09 × 10−5, n = 1,000 neurons; 
Supplementary Table 6), which can be seen in Fig. 5e,f, Extended Data 
Fig. 10i and Supplementary Video 2. The DINO features themselves 
did not drive performance, because shuffling of features showed poor 
decoding (Extended Data Fig. 10j).

Lastly, we tested decoding from other higher visual areas using DINO 
features. Overall, decoding from V1 had the highest performance and 
VISrl the lowest (Fig. 5g and Extended Data Fig. 10k). Given the high 
decoding performance of CEBRA, we tested whether there was a particu-
lar V1 layer that was most informative. We leveraged CEBRA-Behaviour 
by training models on each category and found that layers 2/3 and 5/6 
showed significantly higher decoding performance compared with 
layer 4 (one-way ANOVA, F(2,12) = 9.88, P = 0.003; Fig. 5h). Given the 
known cortical connectivity, this suggests that the nonthalamic input 
layers render frame information more explicit, perhaps via feedback 
or predictive processing.

Discussion
CEBRA is a nonlinear dimensionality reduction method newly devel-
oped to explicitly leverage auxiliary (behaviour) labels and/or time to 
discover latent features in time series data—in this case, latent neural 
embeddings. The unique property of CEBRA is the extension and gener-
alization of the standard InfoNCE objective by introduction of a variety 
of different sampling strategies tuned for usage of the algorithm in the 
experimental sciences and for analysis of time series datasets, and it 
can also be used for supervised and self-supervised analysis, thereby 
directly facilitating hypothesis- and discovery-driven science. It pro-
duces both consistent embeddings across subjects (thus showing com-
mon structure) and can find the dimensionality of neural spaces that are 
topologically robust. Although there remains a gap in our understand-
ing of how these latent spaces map to neural-level computations, we 
believe this tool provides an advance in our ability to map behaviour 
to neural populations. Moreover, because pretrained CEBRA models 
can be used for decoding in new animals within tens of steps (millisec-
onds), we can thereby obtain equal or better performance compared 
with training on the unseen animal alone.

Dimensionality reduction is often tightly linked to data visualiza-
tion, and here we make an empirical argument that ultimately this is 
useful only when obtaining consistent results and discovering robust 
features. Unsupervised t-SNE and UMAP are examples of algorithms 
widely used in life sciences for discovery-based analysis. However, they 
do not leverage time and, for neural recordings, this is always avail-
able and can be used. Even more critical is that concatenation of data 
from different animals can lead to shifted clusters with t-SNE or UMAP 
due to inherent small changes across animals or in how the data were 
collected. CEBRA allows the user to remove this unwanted variance 
and discover robust latents that are invariant to animal ID, sessions 
or any-other-user-defined nuisance variable. Collectively we believe 
that CEBRA will become a complement to (or replacement for) these 
methods such that, at minimum, the structure of time in the neural 
code is leveraged and robustness is prioritized.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06031-6.

1. Urai, A. E., Doiron, B., Leifer, A. M. & Churchland, A. K. Large-scale neural recordings call 
for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2021).

2. Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A. & Poeppel, D. 
Neuroscience needs behavior: correcting a reductionist bias. Neuron 93, 480–490 
(2017).

3. Jazayeri, M. & Ostojic, S. Interpreting neural computations by examining intrinsic and 
embedding dimensionality of neural activity. Curr. Opin. Neurobiol. 70, 113–120  
(2021).

4. Humphries, M. D. Strong and weak principles of neural dimension reduction. Neuron. 
Behav. Data Anal. Theory https://nbdt.scholasticahq.com/article/24619 (2020).

5. Zhou, D., & Wei, X. Learning identifiable and interpretable latent models of high-dimensional 
neural activity using pi-VAE. Adv. Neural Inf. Process. Syst. https://proceedings.neurips.
cc//paper/2020/file/510f2318f324cf07fce24c3a4b89c771-Paper.pdf (2020).

6. Vargas-Irwin, C. E. et al. Decoding complete reach and grasp actions from local primary 
motor cortex populations. J. Neurosci. 30, 9659–9669 (2010).

7. Okorokova, E. V., Goodman, J. M., Hatsopoulos, N. G. & Bensmaia, S. J. Decoding hand 
kinematics from population responses in sensorimotor cortex during grasping. J. Neural 
Eng. 17, 046035 (2020).

8. Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional single-trial analysis 
of neural population activity. J. Neurophysiol. 102, 614–635 (2008).

9. Churchland, M. et al. Neural population dynamics during reaching. Nature 487, 51–56 
(2012).

10. Gallego, J. A. et al. Cortical population activity within a preserved neural manifold 
underlies multiple motor behaviors. Nat. Commun. 9, 4233 (2018).

11. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation 
and Projection for dimension reduction. J. Open Source Softw. 3, 861 (2018).

12. Maaten, L. V., Postma, E. O. & Herik, J. V. Dimensionality reduction: a comparative review. 
J. Mach. Learn. Res. 10, 13 (2009).

13. Roeder, G., Metz, L. & Kingma, D. P. On linear identifiability of learned representations. 
Proc. Mach. Learn. Res. 139, 9030–9039 (2021).

14. Hyvärinen, A., Sasaki, H. & Turner, R. E. Nonlinear ICA using auxiliary variables and 
generalized contrastive learning. Proc. Mach. Learn. Res. 89, 859–868 (2019).

15. Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling 
behaviorally relevant neural dynamics enabled by preferential subspace identification. 
Nat. Neurosci. 24, 140–149 (2020).

16. Klindt, D. A. et al. Towards nonlinear disentanglement in natural data with temporal 
sparse coding. International Conference on Learning Representations https://openreview.
net/forum?id=EbIDjBynYJ8 (2021).

17. Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential 
auto-encoders. Nat. Methods 15, 805–815 (2017).

18. Prince, L. Y., Bakhtiari, S., Gillon, C. J., & Richards, B. A. Parallel inference of hierarchical 
latent dynamics in two-photon calcium imaging of neuronal populations. Preprint at 
https://www.biorxiv.org/content/10.1101/2021.03.05.434105v1 (2021).

19. Gutmann, M. U. & Hyvärinen, A. Noise-contrastive estimation of unnormalized statistical 
models, with applications to natural image statistics. J. Mach. Learn. Res. 13, 307–361 
(2012).

20. Oord, A. V., Li, Y. & Vinyals, O. Representation learning with contrastive predictive coding. 
Preprint at https://doi.org/10.48550/arXiv.1807.03748 (2018).

21. Khosla, P. et al. Supervised contrastive learning. Adv. Neural Inf. Process. Syst. 33,  
18661–18673 (2020).

22. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. E. A simple framework for contrastive 
learning of visual representations. Proc. Mach. Learn. Res. 119, 1597–1607 (2020).

23. Hälvä, H. et al. Disentangling identifiable features from noisy data with structured 
nonlinear ICA. Adv. Neural Inf. Process. Syst. 34, 1624–1633 (2021).

24. Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M. & Brendel, W. Contrastive 
learning inverts the data generating process. Proc. Mach. Learn. Res. 139, 12979–12990 
(2021).

25. Keshtkaran, M. R. et al. A large-scale neural network training framework for generalized 
estimation of single-trial population dynamics. Nat. Methods 19, 1572–1577 (2022).

26. Grosmark, A. D. & Buzsáki, G. Diversity in neural firing dynamics supports both rigid and 
learned hippocampal sequences. Science 351, 1440–1443 (2016).

27. Huxter, J. R., Burgess, N. & O’Keefe, J. Independent rate and temporal coding in 
hippocampal pyramidal cells. Nature 425, 828–832 (2003).

28. Moser, E. I., Kropff, E. & Moser, M. Place cells, grid cells, and the brain’s spatial 
representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

29. Dombeck, D. A., Harvey, C. D., Tian, L., Looger, L. L. & Tank, D. W. Functional imaging of 
hippocampal place cells at cellular resolution during virtual navigation. Nat. Neurosci. 13, 
1433–1440 (2010).

30. Curto, C. What can topology tell us about the neural code? Bull. Am. Math. Soc 54, 63–78 
(2016).

31. Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A. & Fiete, I. R. The intrinsic attractor 
manifold and population dynamics of a canonical cognitive circuit across waking and 
sleep. Nat. Neurosci. 22, 1512–1520 (2019).

32. Silva, V. D., Morozov, D. & Vejdemo-Johansson, M. Persistent cohomology and circular 
coordinates. Discrete Comput. Geom. 45, 737–759 (2009).

33. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602,  
123–128 (2022).

34. Chowdhury, R. H., Glaser, J. I. & Miller, L. E. Area 2 of primary somatosensory cortex 
encodes kinematics of the whole arm. eLife 9, e48198 (2019).

35. Prud’homme, M. J. & Kalaska, J. F. Proprioceptive activity in primate primary somatosensory 
cortex during active arm reaching movements. J. Neurophysiol. 72, 2280–2301 (1994).

36. London, B. M. & Miller, L. E. Responses of somatosensory area 2 neurons to actively and 
passively generated limb movements. J. Neurophysiol. 109, 1505–1513 (2013).

37. Pei, F. et al. Neural Latents Benchmark ‘21: Evaluating latent variable models of neural 
population activity. Proceedings of the Neural Information Processing Systems Track on 
Datasets and Benchmarks https://openreview.net/forum?id=KVMS3fl4Rsv (2021).

38. Berens, P. et al. Community-based benchmarking improves spike rate inference from 
two-photon calcium imaging data. PLoS Comput. Biol. 14, e1006157 (2018).

39. Hafting, T., Fyhn, M., Molden, S., Moser, M. & Moser, E. I. Microstructure of a spatial map in 
the entorhinal cortex. Nature 436, 801–806 (2005).

40. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. 
Science 275, 1593–1599 (1997).

https://doi.org/10.1038/s41586-023-06031-6
https://nbdt.scholasticahq.com/article/24619
https://proceedings.neurips.cc//paper/2020/file/510f2318f324cf07fce24c3a4b89c771-Paper.pdf
https://proceedings.neurips.cc//paper/2020/file/510f2318f324cf07fce24c3a4b89c771-Paper.pdf
https://openreview.net/forum?id=EbIDjBynYJ8
https://openreview.net/forum?id=EbIDjBynYJ8
https://www.biorxiv.org/content/10.1101/2021.03.05.434105v1
https://doi.org/10.48550/arXiv.1807.03748
https://openreview.net/forum?id=KVMS3fl4Rsv


Nature | www.nature.com | 9

41. Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type specific signals 
for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2011).

42. Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an 
anatomically distinct subclass. eLife 4, e10032 (2015).

43. Hubel, D. H. & Wiesel, T. N. Ferrier lecture – functional architecture of macaque monkey 
visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59 (1977).

44. Niell, C. M., Stryker, M. P. & Keck, W. M. Highly selective receptive fields in mouse visual 
cortex. J. Neurosci. 28, 7520–7536 (2008).

45. Ringach, D. L. et al. Spatial clustering of tuning in mouse primary visual cortex. Nat. 
Commun. 7, 12270 (2016).

46. de Vries, S. E. et al. A large-scale standardized physiological survey reveals functional 
organization of the mouse visual cortex. Nat. Neurosci. 23, 138–151 (2019).

47. Siegle, J. H. et al. Survey of spiking in the mouse visual system reveals functional hierarchy. 
Nature 592, 86–92 (2021).

48. Caron, M. et al. Emerging properties in self-supervised vision transformers. IEEE/CVF 
International Conference on Computer Vision 9630–9640 (2021).

49. Esfahany, K., Siergiej, I., Zhao, Y. & Park, I. M. Organization of neural population code in 
mouse visual system. eNeuro 5, ENEURO.0414-17.2018 (2018).

50. Jin, M. & Glickfeld, L. L. Mouse higher visual areas provide both distributed and specialized 
contributions to visually guided behaviors. Curr. Biol. 30, 4682–4692 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

http://creativecommons.org/licenses/by/4.0/


Article
Methods

Datasets
Artificial spiking dataset. The synthetic spiking data used for bench-
marking in Fig. 1 were adopted from Zhou and Wei5. The continuous 
1D behaviour variable c π∈ [0, 2 ) was sampled uniformly in the inter-
val π[0, 2 ). The true 2D latent variable ∈ 2Rz  was then sampled from 
a Gaussian distribution µ c Σ c( ( ), ( ))N  with mean ⊤µ c c c( ) = ( , 2sin )  and 
covariance Σ c c c( ) = diag(0.6 − 0.3 sin , 0.3 sin )∣ ∣ ∣ ∣ . After sampling, 
the 2D latent variable z was mapped to the spiking rates of 100 neurons 
by the application of four randomly initialized RealNVP51 blocks.  
Poisson noise was then applied to map firing rates onto spike counts. 
The final dataset consisted of 1.5 × 104 data points for 100 neurons 
([number of samples, number of neurons]) and was split into train 
(80%) and validation (20%) sets. We quantified consistency across 
the entire dataset for all methods. Additional synthetic data, pre-
sented in Extended Data Fig. 1, were generated by varying noise dis-
tribution in the above generative process. Beside Poisson noise, we 
used additive truncated ([0,1000]) Gaussian noise with s.d. = 1 and 
additive uniform noise defined in [0,2], which was applied to the 
spiking rate. We also adapted Poisson spiking by simulating neurons 
with a refractory period. For this, we scaled the spiking rates to an 
average of 110 Hz. We sampled interspike intervals from an exponen-
tial distribution with the given rate and added a refractory period  
of 10 ms.

Rat hippocampus dataset. We used the dataset presented in Grosmark 
and Buzsáki26. In brief, bilaterally implanted silicon probes recorded  
multicellular electrophysiological data from CA1 hippocampus  
areas from each of four male Long–Evans rats. During a given session, 
each rat independently ran on a 1.6-m-long linear track where they 
were rewarded with water at each end of the track. The numbers of 
recorded putative pyramidal neurons for each rat ranged between 48 
and 120. Here, we processed the data as in Zhou and Wei5. Specifically, 
the spikes were binned into 25 ms time windows. The position and run-
ning direction (left or right) of the rat were encoded into a 3D vector, 
which consisted of the continuous position value and two binary values 
indicating right or left direction. Recordings from each rat were parsed 
into trials (a round trip from one end of the track as a trial) and then split 
into train, validation and test sets with a k = 3 nested cross-validation 
scheme for the decoding task.

Macaque dataset. We used the dataset presented in Chowdhury et al.34 
In brief, electrophysiological recordings were performed in Area 2 of 
somatosensory cortex (S1) in a rhesus macaque (monkey) during a 
centre-out reaching task with a manipulandum. Specifically, the mon-
key performed an eight-direction reaching task in which on 50% of 
trials it actively made centre-out movements to a presented target. The 
remaining trials were ‘passive’ trials in which an unexpected 2 Newton 
force bump was given to the manipulandum towards one of the eight 
target directions during a holding period. The trials were aligned as in 
Pei et al.37, and we used the data for −100 and 500 ms from movement 
onset. We used 1 ms time bins and convolved the data using a Gaussian 
kernel with s.d. = 40 ms.

Mouse visual cortex datasets. We utilized the Allen Institute 
two-photon calcium imaging and Neuropixels data recorded from 
five mouse visual and higher visual cortical areas (VISp, VISl, VISal, 
VISam, VISpm and VISrl) during presentation of a monochrome vid-
eo with 30 Hz frame rate, as presented previously46,47,52. For calcium  
imaging (2P) we used the processed dataset from Vries et  al.46  
with a sampling rate of 30 Hz, aligned to the video frames. We con-
sidered the recordings from excitatory neurons (Emx1-IRES-Cre, 
Slc17a7-IRES2-Cre, Cux2-CreERT2, Rorb-IRES2-Cre, Scnn1a-Tg3-Cre, 
Nr5a1-Cre, Rbp4-Cre_KL100, Fezf2-CreER and Tlx3-Cre_PL56) in the 

‘Visual Coding-2P’ dataset. Ten repeats of the first video (Movie 1) were 
shown in all session types (A, B and C) for each mouse and we used those 
neurons that were recorded in all three session types, found via cell  
registration46. The Neuropixels recordings were obtained from the 
‘Brain Observatory 1.1’ dataset47. We used the preprocessed spike tim-
ings and binned them to a sampling frequency of 120 Hz, aligned with 
the video timestamps (exactly four bins aligned with each frame). The 
dataset contains recordings for ten repeats, and we used the same video 
(Movie 1) that was used for the 2P recordings. For analysis of consist-
ency across the visual cortical areas we used a disjoint set of neurons 
for each seed, to avoid higher intraconsistency due to overlapping 
neuron identities. We made three disjoint sets of neurons by consid-
ering only neurons from session A (for 2P data) and nonoverlapping 
random sampling for each seed.

CEBRA model framework
Notation. We will use x,y as general placeholder variables and  
denote the multidimensional, time-varying signal as st, parameter-
ized by time t. The multidimensional, continuous context variable 
ct contains additional information about the experimental condi-
tion and additional recordings, similar to the discrete categorical  
variable kt.

The exact composition of s, c and k depends on the experimental 
context. CEBRA is agnostic to exact signal types; with the default 
parameterizations, st and ct can have up to an order of hundreds or 
thousands of dimensions. For even higher-dimensional datasets  
(for example, raw video, audio and so on) other optimized deep learn-
ing tools can be used for feature extraction before the application of  
CEBRA.

Applicable problem setup. We refer to X∈x  as the reference sample 
and to Y∈y  as a corresponding positive or negative sample. Together, 
(x, y) form a positive or negative pair based on the distribution from 
which y is sampled. We denote the distribution and density function 
of x as p(x), the conditional distribution and density of the positive 
sample y given x as ∣p( )y x  and the conditional distribution and den-
sity of the negative sample y given x as y xq ( )∣ .

After sampling—and irrespective of whether we are considering a 
positive or negative pair—samples x ∈ DR  and y R∈ D ′ are encoded by 
feature extractors f ↦X Z:  and Y Z′ : ↦f . The feature extractors map 
both samples from signal space X Y⊆ , ⊆D D ′R R  into a common embed-
ding space RZ ⊆ E. The design and parameterization of the feature 
extractor are chosen by the user of the algorithm. Note that spaces X 
and Y and their corresponding feature extractors can be the same 
(which is the case for single-session experiments in this work), but 
that this is not a strict requirement within the CEBRA framework (for 
example, in multi-session training across animals or modalities, X and 
Y are selected as signals from different mice or modalities, respec-
tively). It is also possible to include the context variable (for example, 
behaviour) into X, or to set x to the context variable and y to the signal 
variable.

Given two encoded samples, a similarity measure R↦φ Z Z: ×  
assigns a score to a pair of embeddings. The similarity measure needs 
to assign a higher score to more similar pairs of points, and to have 
an upper bound. For this work we consider the dot product between 
normalized feature vectors, ⊤z z z zφ τ( , ′) = ′/ , in most analyses (latents 
on a hypersphere) or the negative mean squared error, 

z z z zφ τ( , ′) = − − ′ /2  (latents in Euclidean space). Both metrics can 
be scaled by a temperature parameter τ that is either fixed or jointly 
learned with the network. Other Lp norms and other similarity metrics, 
or even a trainable neural network (a so-called projection head com-
monly used in contrastive learning algorithms14,22), are possible 
choices within the CEBRA software package. The exact choice of ϕ 
shapes the properties of the embedding space and encodes assump-
tions about distributions p and q.



The technique requires paired data recordings—for example, as is 
common in aligned time series. The signal st, continuous context ct and 
discrete context kt are synced in their time point t. How the reference, 
positive and negative samples are constructed from these available sig-
nals is a configuration choice made by the algorithm user, and depends 
on the scientific question under investigation.

Optimization. Given the feature encoders f and f′ for the different 
sample types, as well as the similarity measure ϕ, we introduce the 
shorthand ψ φ( , ) = ( ( ), ′( ))x y f x f y . The objective function can then be 
compactly written as:













∫ ∫ ∫ψd p( ) − d p( | ) ( , ) + log d q( | )e . (1)ψ

∈X ∈Y ∈Y

( , )x x y y x x y y y x
x y y

x y

We approximate this objective by drawing a single positive example 
y+, and multiple negative examples yi from the distributions outlined 
above, and minimize the loss function

E x y
x x y y x

y y y x

x y

 



∑ψ e− ( , ) + log , (2)p p

q
i

n
ψ

( ), ( | )

,…, ( | )

+
=1

( , )

n

i

+

1











with a gradient-based optimization algorithm. The number of negative 
samples is a hyperparameter of the algorithm, and larger batch sizes 
are generally preferable.

For sufficiently small datasets, as used in this paper, both positive 
and negative samples are drawn from all available samples in the data-
set. This is in contrast to the common practice in many contrastive 
learning frameworks in which a minibatch of samples is drawn first, 
which are then grouped into positive and negative pairs. Allowing 
access to the whole dataset to form pairs gives a better approximation 
of the respective distributions y x∣p ( )  and ∣q ( )y x , and considerably 
improves the quality of the obtained embeddings. If the dataset is suf-
ficiently small to fit into the memory, CEBRA can be optimized with 
batch gradient descent—that is, using the whole dataset at each opti-
mizer step.

Goodness of fit. Comparing the loss value—at both absolute and  
relative values across models at the same point in training time— can 
be used to determine goodness of fit. In practical terms, this means 
that one can find which hypothesis best fits one’s data, in the case of 
using CEBRA-Behaviour. Specifically, let us denote the objective in 
equation(1) as Lasympt and its approximation in equation (2) with a batch 
size of n as Ln. In the limit of many samples, the objective converges up 
to a constant, L L n= lim [ − log ]n nasympt →∞  (Supplementaty Note 2 and  
ref. 53).

The objective also has two trivial solutions: the first is obtained for 
a constant ψ ψ( , ) =x y , which yields a value of Ln = logn. This solution 
can be obtained when the labels are not related to the signal (e.g., with 
shuffled labels). It is typically not obtained during regular training 
because the network is initialized randomly, causing the initial embed-
ding points to be randomly distributed in space.

If the embedding points are distributed uniformly in space and ϕ is 
selected such that x yE φ[ ( , )] = 0, we will also get a value that is approx-
imately Ln  =  logn. This value can be readily estimated by computing 
φ ( , )u v  for randomly distributed points.

The minimizer of equation (1) is also clearly defined as D p q− ( )KL  
and depends on the positive and negative distribution. For 
discovery-driven (time contrastive) learning, this value is impossible 
to estimate because it would require access to the underlying condi-
tional distribution of the latents. However, for training with predefined 
positive and negative distributions, this quantity can be again numer-
ically estimated.

Interesting values of the loss function when fitting a CEBRA model 
are therefore

D p q L n− ( ) ≤ − log ≤ 0 (3)nKL

where Ln – logn is the goodness of fit (lower is better) of the CEBRA 
model. Note that the metric is independent of the batch size used for 
training.

Sampling. Selection of the sampling scheme is CEBRA’s key feature in 
regard to adapting embedding spaces to different datasets and record-
ing setups. The conditional distributions y xp ( )∣  for positive samples 
and q ( )y x∣  for negative samples, as well as the marginal distribution 
p(x) for reference samples, are specified by the user. CEBRA offers a 
set of predefined sampling techniques but customized variants can be 
specified to implement additional, domain-specific distributions. This 
form of training allows the use of context variables to shape the prop-
erties of the embedding space, as outlined in the graphical model in 
Supplementary Note 1.

Through the choice of sampling technique, various use cases can 
be built into the algorithm. For instance, by forcing positive and nega-
tive distributions to sample uniformly across a factor, the model will 
become invariant to this factor because its inclusion would yield a 
suboptimal value of the objective function.

When considering different sampling mechanisms we distinguish 
between single- and multi-session datasets: a single-session dataset 
consists of samples st associated to one or more context variables ct 
and/or kt. These context variables allow imposition of the structure 
on the marginal and conditional distribution used for obtaining the 
embedding. Multi-session datasets consist of multiple, single-session 
datasets. The dimension of context variables ct and/or kt must be shared 
across all sessions whereas the dimension of the signal st can vary. In 
such a setting, CEBRA allows learning of a shared embedding space for 
signals from all sessions.

For single-session datasets, sampling is done in two steps. First, based 
on a specified ‘index’ (the user-defined context variable ct and/or kt), 
locations t are sampled for reference, positive and negative samples. 
The algorithm differentiates between categorical (k) and continuous 
(c) variables for this purpose.

In the simplest case, negative sampling (q) returns a random sample 
from the empirical distribution by returning a randomly chosen index 
from the dataset. Optionally, with a categorical context variable 
k K∈ [ ]t , negative sampling can be performed to approximate a uniform 
distribution of samples over this context variable. If this is performed 
for both negative and positive samples, the resulting embedding will 
become invariant with respect to the variable kt. Sampling is performed 
in this case by computing the cumulative histogram of kt and sampling 
uniformly over k using the transformation theorem for probability 
densities.

For positive pairs, different options exist based on the availability 
of continuous and discrete context variables. For a discrete context 
variable k K∈ [ ]t  with K possible values, sampling from the conditional 
distribution is done by filtering the whole dataset for the value kt of the 
reference sample, and uniformly selecting a positive sample with the 
same value. For a continuous context variable ct we can use a set of time 
offsets Δ to specify the distribution. Given the time offsets, the empir-
ical distribution ∣c cP ( )t τ t+  for a particular choice of τ ∆∈  can be com-
puted from the dataset: we build up a set D t T τ ∆= { ∈ [ ], ∈ : − }t τ t+c c , 
sample a d uniformly from D and obtain the sample that is closest to 
the reference sample’s context variable modified by this distance  
(c + d) from the dataset. It is possible to combine a continuous variable 
ct with a categorical variable kt for mixed sampling. On top of the con-
tinual sampling step above, it is ensured that both samples in the 
positive pair share the same value of kt.



Article
It is crucial that the context samples c and the norm used in the algo-

rithm match in some way; for simple context variables with predictable 
conditional distributions (for example, a 1D or 2D position of a mov-
ing animal, which can most probably be well described by a Gaussian 
conditional distribution based on the previous sample), the positive 
sample distribution can also be specified directly, for example, as a 
normal distribution centred around ct. An additional alternative is to 
use CEBRA also to preprocess the original context samples c and use the 
embedded context samples with the metric used for CEBRA training. 
This scheme is especially useful for higher-dimensional behavioural 
data, or even for complex inputs such as video.

We next consider the multi-session case in which signals ∈t
i n( ) iRs  

come from N different sessions i N∈ [ ] with session-dependent dimen-
sionality ni. Importantly, the corresponding continuous context vari-
ables ∈t

i m( ) Rc  share the same dimensionality m, which makes it 
possible to relate samples across sessions. The multi-session setup is 
similar to mixed-session sampling (if we treat the session ID as a cat-
egorical variable k i:=t

i( )  for all time steps t in session i). The conditional 
distribution for both negative and positive pairs is uniformly sampled 
across sessions, irrespective of session length. Multi-session mixed or 
discrete sampling can be implemented analogously.

CEBRA is sufficiently flexible to incorporate more specialized sam-
pling schemes beyond those outlined above. For instance, mixed 
single-session sampling could be extended additionally to incorporate a 
dimension to which the algorithm should become invariant; this would 
add an additional step of uniform sampling with regard to this desired 
discrete variable (for example, via ancestral sampling).

Choice of reference, positive and negative samples. Depending on 
the exact application, the contrastive learning step can be performed 
by explicitly including or excluding the context variable. The reference 
sample x can contain information from the signal st, but also from the 
experimental conditions, behavioural recordings or other context 
variables. The positive and negative samples y are set to the signal 
variable st.

Theoretical guarantees for linear identifiability of CEBRA models. 
Identifiability describes the property of an algorithm to give a consist-
ent estimate for the model parameters given that the data distributions 
match. We here apply the relaxed notion of linear identifiability that was 
previously discussed and used13,14. After training two encoder models 
f and f′, the models are linearly identifiable if f(x) = Lf(x), where L is a 
linear map.

When applying CEBRA, three cases are of potential interest. (1) When  
applying discovery-driven CEBRA, will two models estimated on  
comparable experimental data agree in their inferred representation? 
(2) Under which assumptions about the data will we be able to discover 
the true latent distribution? (3) In the hypothesis-driven or hybrid 
application of CEBRA, is the algorithm guaranteed to give a meaningful 
(nonstandard) latent space when we can find signal within the data?

For the first case, we note that the CEBRA objective with a cosine 
similarity metric follows the canonical discriminative form for which 
Roeder et al.13 showed linear identifiability: for sufficiently diverse 
datasets, two CEBRA models trained to convergence on the same 
dataset will be consistent up to linear transformations. Note that the 
consistency of CEBRA is independent of the exact data distribution: 
it is merely required that the embeddings of reference samples across 
multiple positive pairs, and the embeddings of negative samples across 
multiple negative pairs, vary in sufficiently numerous linearly inde-
pendent directions. Alternatively, we can derive linear identifiability 
from assumptions about data distribution: if the ground truth latents 
are sufficiently diverse (that is, vary in all latent directions under distri-
butions p and q), and the model is sufficiently parameterized to fit the 
data, we will also obtain consistency up to a linear transformation. See 
Supplementary Note 2 for a full formal discussion and proof.

For the second case, additional assumptions are required regarding 
the exact form of data-generating distributions. Within the scope of this 
work we consider ground truth latents distributed on the hypersphere 
or Euclidean space. The metric then needs to match assumptions about 
the variation of ground truth latents over time. In discovery-driven 
CEBRA, using the dot product as the similarity measure then encodes 
the assumption that latents vary according to a von Mises–Fisher 
distribution whereas the (negative) mean squared error encodes an 
assumption that latents vary according to a normal distribution. More 
broadly, if we assume that the latents have a uniform marginal distribu-
tion (which can be ensured by designing unbiased experiments), the 
similarity measure should be chosen as the log-likelihood of conditional 
distribution over time. In this case, CEBRA identifies the latents up to 
an affine transformation (in the most general case).

This result also explains the empirically high performance of CEBRA 
for decoding applications: if trained for decoding (using the variable 
to decode for informing the conditional distribution), it is trivial to 
select matching conditional distributions because both quantities 
are directly selected by the user. CEBRA then ‘identifies’ the context 
variable up to an affine transformation.

For the third case, we are interested in hypothesis-testing capabili-
ties. We can show that if a mapping exists between the context vari-
able and the signal space, CEBRA will recover this relationship and 
yield a meaningful embedding, which is also decodable. However, if 
such a mapping does not exist we can show that CEBRA will not learn 
a structured embedding.

CEBRA models
We chose X = Y as the neural signal, with varying levels of recorded neu-
rons and channels based on the dataset. We used three types of encoder 
model based on the required receptive field: a receptive field of one 
sample was used for the synthetic dataset experiments (Fig. 1b) and a 
receptive field of ten samples in all other experiments (rat, monkey,  
mouse) except for the Neuropixels dataset, in which a receptive field 
of 40 samples was used due to the fourfold higher sampling rate of 
the dataset.

All feature encoders were parameterized by the number of neurons 
(input dimension), a hidden dimension used to control model size 
and capacity, as well as by their output (embedding) dimension. For 
the model with the receptive field of one, a four-layer MLP was used. 
The first and second layers map their respective inputs to the hidden 
dimension whereas the third introduces a bottleneck and maps to 
half the hidden dimension. The final layer maps to the requested out-
put dimension. For the model with a receptive field of ten, a convolu-
tional network with five time-convolutional layers was used. The first 
layer had a kernel size of two, and the next three had a kernel size of 
three and used skip connections. The final layer had a kernel size of 
three and mapped hidden dimensions to the output dimension. For 
the model with receptive field 40, we first preprocessed the signal by 
concatenating a 2× downsampled version of the signal with a learnable 
downsample operation implemented as a convolutional layer with 
kernel size four and stride two, directly followed (without activation 
function between) by another convolutional layer with kernel size three 
and stride two. After these first layers, the signal was subsampled by 
a factor of four. Afterwards, similar to the receptive field ten model, 
we applied three layers with kernel size three and skip connections 
and a final layer with kernel size three. In all models, Gaussian error 
linear unit activation functions54 were applied after each layer except 
the last. The feature vector was normalized after the last layer unless 
a mean squared error-based similarity metric was used (as shown in 
Extended Data Fig. 8).

Our implementation of the InfoNCE criterion received a minibatch 
(or the full dataset) of size n × d for each of the reference, positive and 
negative samples. n dot-product similarities were computed between 
reference and positive samples and n × n dot-product similarities were 



computed between reference and negative samples. Similarities were 
scaled with the inverse of the temperature parameter τ:

from torch import einsum, logsumexp, no_grad

def info_nce(ref, pos, neg, tau = 1.0):
pos_dist = einsum(“nd,nd–>n”, ref, pos)/tau
neg_dist = einsum(“nd,md–>nm”, ref, neg)/tau
with no_grad():

 c, _ = neg_dist.max(dim=1)
pos_dist = pos_dist – c.detach()
neg_dist = neg_dist – c.detach()
pos_loss = –pos_dist.mean()
neg_loss = logsumexp(neg_dist, dim = 1).mean()
return pos_loss + neg_loss

Alternatively, a learnable temperature can be used. For a numerically 
stable implementation we store the log inverse temperature α τ= −log  
as a parameter of loss function. At each step we scale the distances in 
loss function with α τmin(exp , 1/ )min . The additional parameter τmin is 
a lower bound on the temperature. The inverse temperature used for 
scaling the distances in the loss will hence lie in τ(0, 1/ ]min .

CEBRA model parameters used. In the main figures we have used the 
default parameters (https://cebra.ai/docs/api.html) for fitting CEBRA 
unless otherwise stated in the text (such as dimension, which varied 
and is noted in figure legends), or below:

Synthetic data: model_architecture= ‘offset1-model-mse’, condi-
tional= ‘delta’, delta=0.1, distance= ‘euclidean’, batch_size=512, learn-
ing_rate=1e-4.

Rat hippocampus neural data: model_architecture= ‘offset10-model’, 
time_offsets=10, batch_size=512.

Rat behavioural data: model_architecture= ‘offset10-model-mse’, 
distance= ‘euclidean’, time_offsets=10, batch_size=512.

Primate S1 neural data: model_architecture= ‘offset10-model’, time_
offsets=10, batch_size=512.

Allen datasets (2P): model_architecture= ‘offset10-model’, time_off-
sets=10, batch_size=512.

Allen datasets (NP): model_architecture= ‘offset40-model-4x- 
subsample’, time_offsets=10, batch_size=512.

CEBRA API and example usage. The Python implementation of  
CEBRA is written in PyTorch55 and NumPy56 and provides an application 
programming interface (API) that is fully compatible with scikit-learn57, 
a package commonly used for machine learning. This allows the use 
of scikit-learn tools for hyperparameter selection and downstream 
processing of the embeddings—for example, decoding. CEBRA can be 
used as a dropin replacement in existing data pipelines for algorithms 
such as t-SNE, UMAP, PCA or FastICA. Both CPU and GPU implementa-
tions are available.

Using the previously introduced notations, suppose we have a data-
set containing signals st, continuous context variables ct and discrete 
context variables kt for all time steps t,

import numpy as np
N = 500
s = np.zeros((N, 55), dtype = float)
k = np.zeros((N,), dtype = int)
c = np.zeros((N, 10), dtype = float)

along with a second session of data,

s2 = np.zeros((N, 75), dtype = float)
c2 = np.zeros((N, 10), dtype = float)
assert c2.shape[1] == c.shape[1]:

note that both the number of samples and the dimension in s′ does not 
need to match s. Session alignment leverages the fact that the second 

dimensions of c and c′ match. With this dataset in place, different vari-
ants of CEBRA can be applied as follows:

import cebra
model = cebra.CEBRA

(output_dimension=8,
num_hidden_units=32,
batch_size=1024,
learning_rate=3e-4,
max_iterations=1000)

The training mode to use is determined automatically based on what 
combination of data is passed to the algorithm:

# time contrastive learning
model.fit(s)
# discrete behaviour contrastive learning
model.fit(s, k)
# continuous behaviour contrastive learning
model.fit(s, c)
# mixed behaviour contrastive learning
model.fit(s, c, k)
# multi-session training
model.fit([s, s2], [c, c2])
# adapt to new session
model.fit(s, c)
model.fit(s2, c2, adapt = True)

Because CEBRA is a parametric method training a neural network 
internally, it is possible to embed new data points after fitting the 
model:

s_test = np.zeros((N, 55), dtype=float)
# obtain and plot embedding
z = model.transform(s_test)
plt.scatter(z[:, 0], z[:, 1])
plt.show()

Besides this simple-to-use API for end users, our implementation 
of CEBRA is a modular software library that includes a plugin system, 
allowing more advanced users to readily add additional model imple-
mentations, similarity functions, datasets and data loaders and distri-
butions for sampling positive and negative pairs.

Consistency of embeddings across runs, subjects, sessions, 
recording modalities and areas
To measure the consistency of the embeddings we used the R2 score of 
linear regression (including an intercept) between embeddings from 
different subjects (or sessions). Secondly, pi-VAE, which we bench-
marked and improved (Extended Data Fig. 1), demonstrated a theo-
retical guarantee that it can reconstruct the true latent space up to an 
affine transformation. Across runs, we measured the R2 score of linear 
regression between embeddings across ten runs of the algorithms, 
yielding 90 comparisons. These runs were done with the same hyper-
parameters, model and training setup.

For the rat hippocampus data, the numbers of neurons recorded 
were different across subjects. The behaviour setting was the same: 
the rats moved along a 1.6-meter-long track and, for analysis, behav-
iour data were binned into 100 bins of equal size for each direction 
(leftwards, rightwards). We computed averaged feature vectors for 
each bin by averaging all normalized CEBRA embeddings for a given 
bin and renormalized the average to lie on the hypersphere. If a bin did 
not contain any sample, it was filled by samples from the two adjacent 
bins. CEBRA was trained with latent dimension three (the minimum) 
such that it was constrained to lie only on a two-sphere (making this 
‘3D’ space equivalent to a 2D Euclidean space). All other methods were 
trained with two latent dimensions in Euclidean space. Note that n + 1 
dimensions of CEBRA are equivalent to n dimensions of other methods 

https://cebra.ai/docs/api.html


Article
that we compared, because the feature space of CEBRA is normalized 
(that is, the feature vectors are normalized to have unit length).

For Allen visual data in which the number of behavioural data points is 
the same across different sessions (that is, fixed length of video stimuli), 
we directly computed the R2 score of linear regression between embed-
dings from different sessions and modalities. We surveyed three, four, 
eight, 32, 64 and 128 latent dimensions with CEBRA.

To compare the consistency of embeddings between or within the 
areas considered, we computed intra- and interarea consistency within 
the same recording modality (2P or NP). Within the same modality we 
sampled 400 neurons from each area. We trained one CEBRA model 
per area and computed linear consistency between all pairs of embed-
dings. For intra-area comparison we sampled an additional 400 disjoint 
neurons. For each area we trained two CEBRA models on these two sets 
of neurons and computed their linear consistency. We repeated this 
process three times.

For comparisons across modalities (2P and NP) we sampled 400 neu-
rons from each modality (which are disjoint, as above, because one set 
was sampled from 2P recordings and the other from NP recordings). 
We trained a multi-session CEBRA model with one encoder for 2P and 
one for NP in the same embedding space. For intra-area comparison 
we computed linear consistency between NP and 2P decoders from 
the same area. For interarea comparison we computed linear consist-
ency between the NP encoder from one area and the 2P encoder from 
another and again considered all combinations of areas. We repeated 
this process three times.

For comparison of single- and multi-session training (Extended Data 
Fig. 7) we computed embeddings using encoder models with eight,  
16, …, 128 hidden units to vary the model size, and benchmarked eight, 
16, …, 128 latent dimensions. Hyperparameters, except for number of 
optimization steps, were selected according to either validation set 
decoding R2 (rat) or accuracy (Allen). Consistency was reported as the 
point in training at which position decoding error was less than 7 cm 
for the first rat in the hippocampus dataset, and a decoding accuracy 
of 60% in the Allen dataset. For single-session training, four embed-
dings were trained independently on each individual animal whereas 
for multi-session training the embeddings were trained jointly on all 
sessions. For multi-session training, the same number of samples was 
drawn from each session to learn an embedding invariant to the session 
ID. The consistency versus decoding error trade-off (Extended Data 
Fig. 7c) was reported as the average consistency across all 12 compari-
sons (Extended Data Fig. 7b) versus average decoding performance 
across all rats and data splits.

Model comparisons
pi-VAE parameter selection and modifications to pi-VAE. Because 
the original implementation of pi-VAE used a single time bin spiking 
rate as an input, we therefore modified their code to allow for larger 
time bin inputs and found that time window input with a receptive 
field of ten time bins (250 ms) gave higher consistency across sub-
jects and better preserved the qualitative structure of the embed-
ding (thereby outperforming the results presented by Zhou and Wei5; 
Extended Data Fig. 1). To do this we used the same encoder neural 
network architecture as that for CEBRA and modified the decoder 
to a 2D output (we call our modified version conv-pi-VAE). Note, we 
used this modified pi-VAE for all experiments except for the synthetic 
setting, for which there is no time dimension and thus the original 
implementation is sufficient.

The original implementation reported a median absolute error of 
12 cm for rat 1 (the individual considered most in that work), and our 
implementation of time-windowed input with ten bins resulted in a 
median absolute error of 11 cm (Fig. 2). For hyperparameters we tested 
different epochs between 600 (the published value used) and 1,000, 
and learning rate between 1.0 × 10−6 and 5.0 × 10−4 via a grid search. 
We fixed hyperparameters as those that gave the highest consistency 

across subjects, which were training epochs of 1,000 and learning rate 
2.5 × 10−4. All other hyperparameters were retained as in the original 
implementation5. Note that the original paper demonstrated that 
pi-VAE is fairly robust across different hyperparameters. For decod-
ing (Fig. 2) we considered both a simple kNN decoder (that we use 
for CEBRA) and the computationally more expensive Monte Carlo 
sampling method originally proposed for pi-VAE5. Our implementa-
tion of conv-pi-VAE can be found at https://github.com/AdaptiveMo-
torControlLab/CEBRA.

autoLFADS parameter selection. AutoLFADS25 includes a hyperpa-
rameter selection and tuning protocol, which we used, and we also 
used the original implementation (https://github.com/snel-repo/
autolfads-tf2/, https://github.com/neurallatents/nlb_tools/tree/
main/examples/baselines/autolfads). For the rat hippocampus 
dataset we chopped the continuous spiking rate (25 ms bin size) into 
250-ms-long segments with 225 ms overlap between segments to 
match the training setup for CEBRA, UMAP, t-SNE and pi-VAE. We used 
population-based training (PBT) for hyperparameter searches and 
constrained the search range to default values given in the original 
script (initial learning rate between 1.0 × 10−5 and 5.0 × 10−3, dropout 
rate 0–0.6, coordinated dropout rate 0.01–0.70, L2 generator weight 
between 1.0 × 10−4 and 1.0, L2 controller weight between 1.0 × 10−4 
and 1.0, KL controller weight between 1.0 × 10−6 and 1.0 × 10−4 and KL 
initial condition weight between 1.0 × 10−6 and 1.0 × 10–3). The negative 
log-likelihood metric was used to select the best hyperparameters. 
Each generation of PBT consisted of 25 training epochs and we trained 
for a maximum of 5,000 epochs of batch size 100 while executing 
early stopping after awaiting 50 epochs. The PBT search was done 
using 20 parallel workers on each rat.

UMAP parameter selection. For UMAP11, following the parameter 
guide (umap-learn.readthedocs.io/), we focused on tuning the num-
ber of neighbours (n_neighbors) and minimum distance (min_dist). 
The n_components parameter was fixed to 2 and we used a cosine 
metric to make a fair comparison with CEBRA, which also used the 
cosine distance metric for learning. We performed a grid search with 
100 total hyperparameter values in the range [2, 200] for n_neighbors 
and in the range [0.0001, 0.99] for min_dist. The highest consist-
ency across runs in the rat hippocampus dataset was achieved with 
min_dist of 0.0001 and n_neighbors of 24. For the other datasets in 
Extended Data Fig. 3 we used the default value of n_neighbors as 15 
and min_dist as 0.1.

t-SNE parameter selection. For t-SNE12 we used the implementation 
in openTSNE58. We performed a sweep on perplexity in the range [5, 50] 
and early_exaggeration in the range [12, 32] following the parameter 
guide, while fixing n_components as 2 and used a cosine metric for 
fair comparison with UMAP and CEBRA. We used PCA initialization 
to improve the run consistency of t-SNE59. The highest consistency 
across runs in the rat hippocampus dataset was achieved with perplex-
ity of ten and early_exaggeration of 16.44. For the other datasets in 
Extended Data Fig. 3 we used the default value for perplexity of 30 and 
for early_exaggeration of 12.

Decoding analysis
We primarily used a simple kNN algorithm, a nonparametric supervised 
learning method, as a decoding method for CEBRA. We used the imple-
mentation in scikit-learn57. We used a kNN regressor for continuous 
value regression and a kNN classifier for discrete label classification. 
For embeddings obtained with cosine metrics we used cosine distance 
metrics for kNN, and Euclidean distance metrics for those obtained in 
Euclidean space.

For the rat hippocampus data a kNN regressor, as implemented 
in scikit-learn57, was used to decode position and a kNN classifier 

https://github.com/AdaptiveMotorControlLab/CEBRA
https://github.com/AdaptiveMotorControlLab/CEBRA
https://github.com/snel-repo/autolfads-tf2/
https://github.com/snel-repo/autolfads-tf2/
https://github.com/neurallatents/nlb_tools/tree/main/examples/baselines/autolfads
https://github.com/neurallatents/nlb_tools/tree/main/examples/baselines/autolfads
http://umap-learn.readthedocs.io/


to decode direction. The number of neighbours was searched over 
the range [1, 4, 9, 16, 25] and we used the cosine distance metric. We 
used the R2 score of predicted position and direction vector on the 
validation set as a metric to choose the best n_neighbours parameter. 
We report the median absolute error for positional decoding on the 
test set. For pi-VAE, we additionally evaluated decoding quality using 
the originally proposed decoding method based on Monte Carlo 
sampling, with the settings from the original article5. For autoLFADS, 
use of their default Ridge regression decoder25 performed worse than 
our kNN decoder, which is why we reported all results for the kNN 
decoder. Note that UMAP, t-SNE and CEBRA-Time were trained using 
the full dataset without label information when learning the embed-
ding, and we used the above split only for training and cross-validation 
of the decoder.

For direction decoding within the monkey dataset we used a Ridge 
classifier57 as a baseline. The regularization hyperparameter was 
searched over [10−6, 102]. For CEBRA we used a kNN classifier for decod-
ing direction with k searched over the range [1, 2500]. For conv-pi-VAE 
we searched for the best learning rate over [1.0 × 10−5, 1.0 × 10−3]. For 
position decoding we used Lasso57 as a baseline. The regularization 
hyperparameter was searched over [10−6, 102]. For conv-pi-VAE we used 
600 epochs and searched for the best learning rates over [5 × 10−4, 
2.5 × 10−4, 0.125 × 10−4, 5 × 10−5] via a grid of (x,y) space in 1 cm bins for 
each axis as the sampling process for decoding. For CEBRA we used 
kNN regression, and the number of neighbours k was again searched 
over [1, 2500].

For the Allen Institute datasets we performed decoding (frame  
number or scene classification) for each frame from Video 1. Here 
we used a kNN classifier57 with a population vector kNN as a baseline, 
similar to the decoding of orientation grating performed in ref. 46. For 
CEBRA we used the same kNN classifier method as on CEBRA features. 
In both cases the number of neighbours, k, was searched over a range 
[1, 100] in an exponential fashion. We used neural data recorded dur-
ing the first eight repeats as the train set, the ninth repeat for valida-
tion in choosing the hyperparameter and the last repeat as the test 
set to report decoding accuracy. We also used a Gaussian naive Bayes 
decoder57 to test linear decoding from the CEBRA model and neural 
population vector. Here we assumed uniform priors over frame number 
and searched over the range [10−10, 103] in an exponential manner for 
the var_smoothing hyperparameter.

For layer-specific decoding we used data from excitatory neurons in 
area VISp: layers 2/3 [Emx1-IRES-Cre, Slc17a7-IRES2-Cre]; layer 4 [Cux2- 
CreERT2, Rorb-IRES2-Cre, Scnn1a-Tg3-Cre]; and layers 5/6 [Nr5a1-Cre, 
Rbp4-Cre_KL100, Fezf2-CreER, Tlx3-Cre_PL56, Ntrsr1-cre].

Neural Latents Benchmark. We tested CEBRA on the mc-maze 20 ms 
task from the Neural Latents Benchmark37 (https://eval.ai/web/chal-
lenges/challenge-page/1256/leaderboard/3183). We trained the off-
set10-model with 48 output dimensions and [128, 256, 512] hidden units, 
as presented throughout the paper. We trained, in total, 48 models by 
additionally varying the temperature in [0.0001, 0.004] and time off-
sets from {1, 2}. We performed smoothing of input neural data using a 
Gaussian kernel with 50 ms s.d. Lastly, we took 45 embeddings from the 
trained models picked by the validation score, aligned the embeddings 
(using the Procrustes method60) and averaged them.

Topological analysis
For the persistent cohomology analysis we utilized ripser.py61. For 
the hippocampus dataset we used 1,000 randomly sampled points 
from CEBRA-Behaviour trained with temperature 1, time offset 10 and 
minibatch size 512 for 10,000 training steps on the full dataset and 
then analysed up to 2D cohomology. Maximum distance considered 
for filtration was set to infinity. To determine the number of cocycles 
in each cohomology dimension with a significant lifespan we trained 
500 CEBRA embeddings with shuffled labels, similar to the approach 

taken in ref. 33. We took the maximum lifespan of each dimension across 
these 500 runs as a threshold to determine robust Betti numbers, then 
surveyed the Betti numbers of CEBRA embeddings across three, eight, 
16, 32 and 64 latent dimensions.

Next we used DREiMac62 to obtain topology-preserving circular coor-
dinates (radial angle) of the first cocycle (H1) from the persistent coho-
mology analysis. Similar to above, we used 1,000 randomly sampled 
points from the CEBRA-Behaviour models of embedding dimensions 
3, 8, 16, 32 and 64.

Behaviour embeddings for video datasets
High-dimensional inputs, such as videos, need further preprocessing 
for effective use with CEBRA. First we used the recently presented DINO 
model48 to embed video frames into a 768D feature space. Specifi-
cally we used the pretrained ViT/8 vision transformer model, which 
was trained by a self-supervised learning objective on the ImageNet 
database. This model is particularly well suited for video analysis and 
among the state-of-the-art models available for embedding natural 
images into a space appropriate for a kNN search48, a desired property 
when making the dataset compatible with CEBRA. We obtained a nor-
malized feature vector for each video frame, which was then used as 
the continuous behaviour variable for all further CEBRA experiments.

For scene labels, three individuals labelled each video frame using 
eight candidate descriptive labels allowing multilabel classes. We took 
the majority vote of these three individuals to determine the label of 
each frame. In the case of multilabels we considered this as a new class 
label. The above procedure resulted in ten classes of frame annotation.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Hippocampus dataset: https://crcns.org/data-sets/hc/hc-11/
about-hc-11, and we used the preprocessing script from https://github.
com/zhd96/pi-vae/blob/main/code/rat_preprocess_data.py. Primate 
dataset: https://gui.dandiarchive.org/#/dandiset/000127. Allen Insti-
tute dataset: Neuropixels data are available at https://allensdk.readthe-
docs.io/en/latest/visual_coding_neuropixels.html. The preprocessed 
2P recordings are available at https://github.com/zivlab/visual_drift/
tree/main/data.

Code availability
Code: https://github.com/AdaptiveMotorControlLab/CEBRA. Code 
used to reproduce the figures: https://github.com/AdaptiveMotor-
ControlLab/CEBRA-figures.
 

51. Dinh, L., Sohl-Dickstein, J. N. & Bengio, S. Density estimation using Real NVP. International 
Conference on Learning Representations https://openreview.net/pdf?id=HkpbnH9lx 
(2017).

52. Deitch, D., Rubin, A. & Ziv, Y. Representational drift in the mouse visual cortex. Curr. Biol. 
31, 4327–4339 (2021).

53. Wang, T. & Isola, P. Understanding contrastive representation learning through alignment 
and uniformity on the hypersphere. Proc. Mach. Learn. Res. 119, 9929–9939 (2020).

54. Hendrycks, D. & Gimpel, K. Gaussian error linear units (GELUs). Preprint at https://doi.org/ 
10.48550/arXiv.1606.08415 (2016).

55. Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. 
Neural Inf. Process. Syst. 32, 8024–8035 (2019).

56. Walt, S. V., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient 
numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

57. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,  
2825–2830 (2011).

58. Policar, P. G., Stražar, M. & Zupan, B. openTSNE: a modular Python library for t-SNE 
dimensionality reduction and embedding. Preprint at bioRxiv https://doi.org/10.1101/ 
731877 (2019).

59. Kobak, D. & Linderman, G. C. Initialization is critical for preserving global data structure in 
both t-SNE and UMAP. Nat. Biotechnol. 39, 156–157 (2021).

https://eval.ai/web/challenges/challenge-page/1256/leaderboard/3183
https://eval.ai/web/challenges/challenge-page/1256/leaderboard/3183
https://crcns.org/data-sets/hc/hc-11/about-hc-11
https://crcns.org/data-sets/hc/hc-11/about-hc-11
https://github.com/zhd96/pi-vae/blob/main/code/rat_preprocess_data.py
https://github.com/zhd96/pi-vae/blob/main/code/rat_preprocess_data.py
https://gui.dandiarchive.org/#/dandiset/000127
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
https://allensdk.readthedocs.io/en/latest/visual_coding_neuropixels.html
https://github.com/zivlab/visual_drift/tree/main/data
https://github.com/zivlab/visual_drift/tree/main/data
https://github.com/AdaptiveMotorControlLab/CEBRA
https://github.com/AdaptiveMotorControlLab/CEBRA-figures
https://github.com/AdaptiveMotorControlLab/CEBRA-figures
https://openreview.net/pdf?id=HkpbnH9lx
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.48550/arXiv.1606.08415
https://doi.org/10.1101/731877
https://doi.org/10.1101/731877


Article
60. Schönemann, P. H. A generalized solution of the orthogonal procrustes problem. 

Psychometrika 31, 1–10 (1966).
61. Tralie, C. J., Saul, N. & Bar-On, R. Ripser.py: a lean persistent homology library for Python. 

J. Open Source Softw. 3, 925 (2018).
62. Tralie, C. J., Mease, T. & Perea, J. Dreimac: dimension reduction with Eilenberg–Maclane 

coordinates. GitHub https://github.com/ctralie/DREiMac/tree/cdd6d02ba53c3597a931d 
b9da478fd198d6ed00f (2018).

Acknowledgements Funding was provided by SNSF grant no. 310030_201057, The Vallee 
Foundation and a Novartis Foundation for Medical-Biological Research Young Investigator 
Grant to M.W.M., a Google PhD Fellowship to S.S. and the German Academic Exchange Service 
to J.H.L. S.S. acknowledges the IMPRS-IS Tübingen and ELLIS PhD programme, and J.H.L. 
thanks the TUM Programme in Neuroengineering. M.W.M. is the Bertarelli Foundation Chair of 
Integrative Neuroscience. We thank L. Eck for help with theory; A. Mathis for advice on 
topological data analysis; M. Bethge, R. Zimmerman, D. Paiton and W. Brendel for general 
discussions; C. Benquet, R. González and J. Lauer for feedback on code; G. Kane for advice  
on statistical analysis; and M. Frey, D. Kobak and J. Macke for comments on the manuscript. 
The funders had no role in the conceptualization, design, data collection, analysis, decision to 
publish or preparation of the manuscript.

Author contributions M.W.M. and S.S. conceptualized the project. S.S., J.H.L. and M.W.M. were 
responsible for the methodology. S.S., J.H.L. and M.W.M. were responsible for the software. 
S.S. was responsible for the theory. S.S. and J.H.L. undertook the formal analysis. S.S. and J.H.L. 
did the investigation. J.H.L., S.S. and M.W.M. were responsible for data curation. M.W.M. wrote 
the original draft. M.W.M., S.S. and J.H.L. wrote and edited the final version of the article.

Funding Open access funding provided by EPFL Lausanne.

Competing interests S.S. and M.W.M. have filed a patent pertaining to the method presented 
in this work (filing no. 63/302,670). The remaining author declares no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-023-06031-6.
Correspondence and requests for materials should be addressed to Mackenzie Weygandt 
Mathis.
Peer review information Nature thanks Anne Churchland, Benjamin Dunn and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/ctralie/DREiMac/tree/cdd6d02ba53c3597a931db9da478fd198d6ed00f
https://github.com/ctralie/DREiMac/tree/cdd6d02ba53c3597a931db9da478fd198d6ed00f
https://doi.org/10.1038/s41586-023-06031-6
http://www.nature.com/reprints


Extended Data Fig. 1 | Overview of datasets, synthetic data, & original 
pi-VAE implementation vs. modified conv-pi-VAE. a, We generated synthetic 
datasets similar to Fig. 1b with additional variations in the noise distributions in 
the generative process. We benchmarked the reconstruction score of the  
true latent using CEBRA and pi-VAE (n = 100 seeds) on the generated synthetic 
datasets. CEBRA showed higher and less variable reconstruction scores  
than pi-VAE in all noise types (one-sided Welch’s t-test, corrected using the 
Holm-Bonferroni method, t and p-values indicated on the plot). b, Example 
visualization of the reconstructed latents from CEBRA and pi-VAE on different 
synthetic dataset types. c, We benchmarked and demonstrate the abilities of 

CEBRA on four datasets. Rat-based electrophysiology data26, where the animal 
transverse a 1.6 meter linear track “leftwards” or “rightwards”. Two mouse-based 
datasets: one 2-photon calcium imaging passively viewing dataset46, and one 
with the same stimulus but recorded with Neuropixels47. A monkey-based 
electrophysiology dataset of centre out reaching from Chowdhury et al.34, and 
processed to trial data as in ref. 52. d, Conv-pi-VAE showed improved performance, 
both with labels (Wilcoxon signed-rank test, P = 0.0341) and without labels 
Wilcoxon signed-rank test, P= 0.0005). Example runs/embeddings the 
consistency across rats, with e, consistency across rats, from target to source, 
as computed in Fig. 1. Cartoon animals are adapted from scidraw.io.



Article

Extended Data Fig. 2 | Hyperparameter changes on visualization and 
consistency. a, Temperature has the largest effect on visualization  
(vs. consistency) of the embedding as shown by a range from 0.1 to 3.21 (highest 
consistency for rat 1), as can be appreciated in 3D (top) and post FastICA into a 
2D embedding (middle). Bottom row shows the corresponding change on 

mean consistency, and in b, the variance can be noted. Orange line denotes 
the median and black dots are individual runs (subject consistency: 10 runs 
with 3 comparisons per rat; run consistency: 10 runs, each compared to 9 
remaining runs).



Extended Data Fig. 3 | CEBRA produced consistent, highly decodable 
embeddings. a, Additional rat data shown for all algorithms we benchmarked 
(see Methods). For CEBRA-Behaviour, we used temperature 1, time offset 10, 
batch size 512 and 10k training steps. For CEBRA-Time, we used temperature 2.25, 
time offset 10, batch size 512 and 4k training steps. For UMAP, we used the cosine 

metric and min_dist of 0.99 and n_neighbors of 31. For t-SNE we used cosine  
metric and perplexity of 29. For conv-pi-VAE, we trained 1000 epochs with 
learning rate 2.5 x 10−4. For autoLFADS we used the in-built ray-tune framework 
for finding optimal hyperparameters. CEBRA was trained with output latent 3D 
(the minimum) and all other methods were trained with a 2D latent.



Article

Extended Data Fig. 4 | Additional metrics used for benchmarking consistency. Comparisons of all algorithms along different metrics for rats 1, 2, 3, 4.  
The orange line is median across n = 10 runs, black circles denote individual runs. Each run is the average over three non-overlapping test splits.



Extended Data Fig. 5 | Hypothesis testing with CEBRA. a, Example data from 
a hippocampus recording session (rat 1). We tested possible relationships 
between three experimental variables (rat location, velocity, movement 
direction) and the neural recordings (120 neurons, not shown). b, Relationship 
between velocity and position. c, We trained CEBRA with three-dimensional 
outputs on every single experimental variable (main diagonal) and every 
combination of two variables. All variables are treated as ‘continuous’ in this 
experiment. We compared original to shuffled variables (shuffling is done by 
permuting all samples over the time dimension) as a control. We projected the 
original three-dimensional space onto the first principal components. We 
show the minimum value of the InfoNCE loss on the trained embedding for all 
combinations in the confusion matrix (lower number is better). Either velocity 

or direction, paired with position information is needed for maximum structure 
in the embedding (highlighted, coloured), yielding lowest InfoNCE error.  
d, Using an eight-dimensional CEBRA embedding did not qualitatively alter the 
results. We again report the first two principal components as well as InfoNCE 
training error upon convergence, and find non-trivial embeddings with lowest 
training error for combinations of direction/velocity and position. e, The 
InfoNCE metric can serve as the goodness of fit metric, both for hypothesis 
testing and identifying decodable embeddings. We trained CEBRA in discovery- 
driven mode with 32 latent dimensions. We compared the InfoNCE loss  
(left, middle) between various hypotheses. Low InfoNCE was correlated with 
low decoding error (right).



Article

Extended Data Fig. 6 | Persistence across dimensions. a, For each dimension 
of CEBRA-Behaviour embedding from the rat hippocampus dataset Betti 
numbers were computed by applying persistent cohomology. The coloured 
dots are lifespans observed in hypothesis based CEBRA-Behaviour. To rule out 
noisy lifespans, we set a threshold (coloured diagonal lines) as maximum 
lifespan based on 500 seeds of shuffled-CEBRA embedding for each dimension. 

b, The topology preserving circular coordinates using the first co-cycle from 
persistent cohomology analysis on the CEBRA embedding of each dimension is 
shown (see Methods). The colours indicate position and direction of the rat at 
the corresponding CEBRA embedding points. c, The radial angle of each 
embedding point obtained from b and the corresponding position and 
direction of the rat.



Extended Data Fig. 7 | Multi-session training and rapid decoding.  
a, Top: hippocampus dataset, single animal vs. multi-animal training shows  
an increase in consistency across animals. Bottom: same for Allen dataset,  
4 mice. b, Consistency matrix single vs. multi-session training for hippocampus 
(32D embedding) and Allen data (128D embedding) respectively. Consistency 
is reported at the point in training where the average position decoding error is 
less than 14 cm (corresponds to 7 cm error for rat 1), and a decoding accuracy  
of 60% on the Allen dataset. c, Comparison of decoding metrics for single or 
multi-session training at various consistency levels (averaged across all 12 
comparisons). Models were trained for 5,000 (single) or 10,000 (multi-session) 
steps with a 0.003 learning rate; batch size was 7,200 samples per session. 

Multi-session training requires longer training or higher learning rates to 
obtain the same accuracy due to the 4-fold larger batch size, but converges to 
same decoding accuracy. We plot points at intervals of 500 steps (n = 10 seeds); 
training progresses from lower right to upper left corner within both plots.  
d, We demonstrate that we could also adapt to an unseen dataset; here, 3 rats 
were used for pretraining, and rat 4 was used as a held-out test. The grey lines 
indicate models trained from scratch (random initialization). We also tested 
fine-tuning only the input embedding (first layer) or the full model, as the 
diagram, left, describes. We measured the average time (mean ± s.d.) to adapt 
100 steps (0.65 ± 0.13 s) and 500 steps (3.07 ± 0.61 s) on 40 repeated 
experiments.



Article

Extended Data Fig. 8 | Somatosensory cortex decoding from primate 
recordings. a, We compare CEBRA-Behaviour with the cosine similarity and 
embeddings on the sphere reproduced from Fig. 3b (left) against CEBRA- 
Behaviour trained with the MSE loss and unnormalized embeddings. The 
embeddings of trials (n = 364) of each direction were post-hoc averaged.  
b, CEBRA-Behaviour trained with x,y position of the hand. Left panel is colour- 
coded to changes in x position and right panel is color-coded to changes in y 
position. c, CEBRA-Time without any external auxiliary variables. As in b, left 
and right are colour-coded to x and y position, respectively. d, Decoding 
performance of target direction using CEBRA-Behaviour, conv-pi-VAE and a 

linear classifier. CEBRA-Behaviour shows significantly higher decoding 
performance than the linear classifier (one-way ANOVA, F(2,75) = 3.37, P < 0.05 
with Post Hoc Tukey significant difference P< 0.05). e, Loss (InfoNCE) vs. 
training iteration for CEBRA-Behaviour with position, direction, active or 
passive, and position+direction labels (and shuffled labels) for all trials (left) or 
only active trials (right), or active trials with a MSE loss. f, Additional decoding 
performance results on position and direction-trained CEBRA models with all 
trial types. For each case, we trained and evaluated 5 seeds represented by black 
dots and the orange line represents the median. g, Results on the mc-maze  
20 ms benchmark.



Extended Data Fig. 9 | CEBRA produces consistent, highly decodable 
embeddings. a, Additional 4 sessions with the most neurons in the Allen visual 
dataset calcium recording shown for all algorithms we benchmarked (see 
Methods). For CEBRA-Behaviour and CEBRA-Time, we used 3D, temperature 1, 
time offset 10, batch size 512 and 10k training steps. For UMAP, we used a cosine 
metric and n_neighbors 15 and min_dist 0.1. For t-SNE, we used a cosine metric 
and perplexity 30. For conv-pi-VAE, we trained with 600 epochs, a batch size of 

200 and a learning rate 5 x 10−4. autoLFADS was trained with ray-tune parameter 
selection and the resulting factors were transformed with PCA to generate the 
visualization. All methods used 10-time-bins input. CEBRA was trained with  
3D latent and all other methods were obtained with an equivalent 2D latent 
dimension. To align for visualization, we aligned to mouse 1, except for conv-pi- 
VAE without labels and for autoLFADS, which visually looked best when aligned 
to mouse 4.



Article

Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Spikes and calcium signalling reveal similar 
embeddings. a, Consistency between the single and jointly trained embeddings. 
b, Consistency of embeddings from two recording modalities, when a single 
modality was trained independently and/or jointly trained. CEBRA can find 
‘common latents’ even without joint training. Data is also presented in Fig. 4e, h, 
but here plotted together to show improvement with joint training; for a and b, 
for each neuron number we have n = 5 shuffles, mean ± s.e.m. c-f, Consistency 
across modalities and areas for CEBRA-Behaviour and -Time (as computed in 
Fig. 4i–k). The purple dots indicate mean of intra-V1 scores and inter-V1 scores 
(inter-V1 vs intra-V1 one-sided Welch’s t-test; 2P (Behaviour): t(10.6) = 1.52, 
P = 0.081, 2P (Time): t(44.3) = 4.26, P = 0.0005, NP (Behaviour): t(11.6) = 2.83, 
P = 0.0085, NP (Time): t(8.9) = 15.51, P < 0.00001) g, CEBRA + kNN decoding 
performance (see Methods) of CEBRA embeddings of different output 
embedding dimensions, from calcium (2P) data or Neuropixels (NP), as denoted; 
for each neuron number we have n = 5 shuffles, mean  ± s.e.m. h, Decoding 
accuracy measured by considering predicted frame being within 1 s difference to 

true frame using CEBRA (2P only), jointly trained (2P+NP), or a baseline 
population vector kNN decoder (using time window 33 ms (single frame), or 330 
ms (10 frame receptive field)); for each neuron number we have n = 5 shuffles, 
mean  ± s.e.m. (i): Single frame performance and quantification using CEBRA 1 
frame receptive field (NP data), or baseline models, n = 900 video frames.  
j, CEBRA-Behaviour used the DINO features as auxiliary labels and DINO-shuffled 
used the shuffled DINO features. We shuffled the frame order of DINO features 
within a repeat. Same shuffled order was use for all repeats. Colour code is frame 
number from the movie. The prediction is considered as true if the predicted 
frame is within 1 s from the true frame, and the accuracy (%) is noted next to the 
embedding. For mouse ID 1–4: 337, 353, 397, 475 neurons were recorded, 
respectively. k, Decoding performance from 2P data from different visual 
cortical areas from different layers using a 10-frame-window, 128D CEBRA-
Behaviour model using DINO features; for each neuron number we have n = 5 
shuffles, mean± s.e.m.






	Learnable latent embeddings for joint behavioural and neural analysis
	Joint behavioural and neural embeddings
	Robust and decodable latent embeddings
	Hypothesis-driven and discovery-driven analyses
	Cohomology as a metric for robustness
	Multi-session, multi-animal CEBRA
	Latent dynamics during a motor task
	Consistent embeddings across modalities
	Decoding of natural videos from cortex
	Discussion
	Online content
	Fig. 1 Use of CEBRA for consistent and interpretable embeddings.
	Fig. 2 Hypothesis- and discovery-driven analysis with CEBRA.
	Fig. 3 Forelimb movement behaviour in a primate.
	Fig. 4 Spikes and calcium signalling show similar CEBRA embeddings.
	Fig. 5 Decoding of natural video features from mouse visual cortical areas.
	Extended Data Fig. 1 Overview of datasets, synthetic data, & original pi-VAE implementation vs.
	Extended Data Fig. 2 Hyperparameter changes on visualization and consistency.
	Extended Data Fig. 3 CEBRA produced consistent, highly decodable embeddings.
	Extended Data Fig. 4 Additional metrics used for benchmarking consistency.
	Extended Data Fig. 5 Hypothesis testing with CEBRA.
	Extended Data Fig. 6 Persistence across dimensions.
	Extended Data Fig. 7 Multi-session training and rapid decoding.
	Extended Data Fig. 8 Somatosensory cortex decoding from primate recordings.
	Extended Data Fig. 9 CEBRA produces consistent, highly decodable embeddings.
	Extended Data Fig. 10 Spikes and calcium signalling reveal similar embeddings.




